Two AAA family ATPases, NSF and p97, have been implicated in membrane fusion during assembly and inheritance of organelles of the secretory pathway. We have now investigated the roles of AAA ATPases in membrane fusion during assembly of the peroxisome, an organelle outside the classical secretory system. Here, we show that peroxisomal membrane fusion in the yeast Yarrowia lipolytica requires two AAA ATPases, Pex1p and Pex6p. Release of membrane- associated Pex1p and Pex6p drives the asymmetric priming of two fusion partners. The next step, peroxisome docking, requires release of Pex1p from one partner. Subsequent fusion of the peroxisomal membranes is independent of both Pex1p and Pex6p.
© 2000 The Rockefeller University Press
2000
The Rockefeller University Press
You do not currently have access to this content.