Laminin 5 regulates anchorage and motility of epithelial cells through integrins α6β4 and α3β1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the α3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all α3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin α6β4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin α3β1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin α3β1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin α6β4, suggesting that signaling through β1 or β4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.
Targeted Disruption of the LAMA3 Gene in Mice Reveals Abnormalities in Survival and Late Stage Differentiation of Epithelial Cells
Address correspondence to Maureen Ryan or William Carter, Fred Hutchinson Cancer Research Center, A3-015, 1100 Fairview Avenue North, Seattle, WA 98109. Tel.: (206) 667-4478. Fax: (206) 667-3331. E-mail: [email protected] or [email protected]
The authors would like to acknowledge financial support from the National Institutes of Health Grants CA49259 and AR-21557 to W.G. Carter and the Dermatology Foundation (M.C. Ryan).
Maureen C. Ryan, Keesook Lee, Yuko Miyashita, William G. Carter; Targeted Disruption of the LAMA3 Gene in Mice Reveals Abnormalities in Survival and Late Stage Differentiation of Epithelial Cells . J Cell Biol 14 June 1999; 145 (6): 1309–1324. doi: https://doi.org/10.1083/jcb.145.6.1309
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement