Skip to Main Content
Skip Nav Destination

A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-terminal half of which is 30% identical to RanBPM. Anti-RanBPM antibodies revealed that RanBPM was localized within the centrosome throughout the cell cycle. Overexpression of RanBPM produced multiple spots which were colocalized with γ-tubulin and acted as ectopic microtubule nucleation sites, resulting in a reorganization of microtubule network. RanBPM cosedimented with the centrosomal fractions by sucrose- density gradient centrifugation. The formation of microtubule asters was inhibited not only by anti- RanBPM antibodies, but also by nonhydrolyzable GTP-Ran. Indeed, RanBPM specifically interacted with GTP-Ran in two-hybrid assay. The central part of asters stained by anti-RanBPM antibodies or by the mAb to γ-tubulin was faded by the addition of GTPγS-Ran, but not by the addition of anti-RanBPM anti- bodies. These results provide evidence that the Ran-binding protein, RanBPM, is involved in microtubule nucleation, thereby suggesting that Ran regulates the centrosome through RanBPM.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal