Shigella flexneri, the causative agent of bacillary dysentery, has the ability to enter nonphagocytic cells. The interferon (IFN) family of cytokines was found to inhibit Shigella invasion of cultured epithelial cells. We show here that IFN-α inhibits a Src-dependent signaling cascade triggered by Shigella that leads to the reorganization of the host cell cytoskeleton. Immunofluorescence studies showed that IFN-α inhibits Shigella-induced actin polymerization required for bacterial entry into cells. Phosphorylation of cortactin, a Src-substrate specifically tyrosyl-phosphorylated during Shigella entry, was inhibited by IFN-α. Overexpression of a dominant interfering form of pp60c-src led to inhibition of Shigella-induced cytoskeletal rearrangements and decreased cortactin phosphorylation indicating a role for Src in Shigella entry. Also, Shigella uptake in cells that expressed constitutively active Src was unaffected by IFN-α treatment. We conclude that Src kinase activity is necessary for Shigella invasion of epithelial cells and that IFN-α inhibits this Src-dependent signaling pathway.

You do not currently have access to this content.