We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519–5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979–992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.
Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons
Address all correspondence to Joel Rosenbaum, MCDB KBT 310, Yale University, P.O. Box 208103, New Haven, CT 06520-8103. Tel.: (203) 432-3472. Fax: (203) 432-5059. E-mail: [email protected]
Brief reports of this work were presented at the International Congress on Chlamydomonas in Regensburg, Germany on May 27–June 1, 1996, and appeared in abstract form (Cole, D.G., and J.L. Rosenbaum. 1996. Mol. Biol. Cell. 7S:47a; Cole, D.G., D.R. Diener, J. Fuster, A. Himelblau, and J.L. Rosenbaum. 1997. Mol. Biol. Cell. 8S:54a).
Douglas G. Cole, Dennis R. Diener, Amy L. Himelblau, Peter L. Beech, Jason C. Fuster, Joel L. Rosenbaum; Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons . J Cell Biol 18 May 1998; 141 (4): 993–1008. doi: https://doi.org/10.1083/jcb.141.4.993
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement