High-affinity IL2 receptors consist of three components, the α, β, and γ chains that are associated in a noncovalent manner. Both the β and γ chains belong to the cytokine receptor superfamily. Interleukin 2 (IL2) binds to high-affinity receptors on the cell surface and IL2-receptor complexes are internalized. After endocytosis, the components of this multimolecular receptor have different intracellular fates: one of the chains, α, recycles to the plasma membrane, while the others, β and γ, are routed towards late endocytic compartments and are degraded. We show here that the cytosolic domain of the β chain contains a 10–amino acid sequence which codes for a sorting signal. When transferred to a normally recycling receptor, this sequence diverts it from recycling. The structure of a 17–amino acid segment of the β chain including this sequence has been studied by nuclear magnetic resonance and circular dichroism spectroscopy, which revealed that the 10 amino acids corresponding to the sorting signal form an amphipathic α helix. This work thus describes a novel, highly structured signal, which is sufficient for sorting towards degradation compartments after endocytosis.

You do not currently have access to this content.