The functional characteristics of a nonacidic, inositol 1,4,5-trisphosphate– and thapsigargin-insensitive Ca2+ pool have been characterized in mammalian cells derived from the rat pituitary gland (GH3, GC, and GH3B6), the adrenal tissue (PC12), and mast cells (RBL-1). This Ca2+ pool is released into the cytoplasm by the Ca2+ ionophores ionomycin or A23187 after the discharge of the inositol 1,4,5-trisphosphate–sensitive store with an agonist coupled to phospholipase C activation and/or thapsigargin. The amount of Ca2+ trapped within this pool increased significantly after a prolonged elevation of intracellular Ca2+ concentration elicited by activation of Ca2+ influx. This pool was affected neither by caffeine-ryanodine nor by mitochondrial uncouplers. Probing mitochondrial Ca2+ with recombinant aequorin confirmed that this pool did not coincide with mitochondria, whereas its homogeneous distribution across the cytosol, as revealed by confocal microscopy, and its insensitivity to brefeldin A make localization within the Golgi complex unlikely. A proton gradient as the driving mechanism for Ca2+ uptake was excluded since ionomycin is inefficient in releasing Ca2+ from acidic pools and Ca2+ accumulation/release in/from this store was unaffected by monensin or NH4Cl, drugs known to collapse organelle acidic pH gradients. Ca2+ sequestration inside this pool, thus, may occur through a low-affinity, high-capacity Ca2+–ATPase system, which is, however, distinct from classical endosarcoplasmic reticulum Ca2+–ATPases. The cytological nature and functional role of this Ca2+ storage compartment are discussed.

You do not currently have access to this content.