The assembly of fibronectin (FN) into a fibrillar matrix is a complex stepwise process that involves binding to integrin receptors as well as interactions between FN molecules. To follow the progression of matrix formation and determine the stages during which specific domains function, we have developed cell lines that lack an endogenous FN matrix but will form fibrils when provided with exogenous FN. Recombinant FNs (recFN) containing deletions of either the RGD cell-binding sequence (RGD-) or the first type III repeats (FN delta III1-7) including the III1 FN binding site were generated with the baculovirus insect cell expression system. After addition to cells, recFN matrix assembly was monitored by indirect immunofluorescence and by insolubility in the detergent deoxycholate (DOC). In the absence of any native FN, FN delta III1-7 was assembled into fibrils and was converted into DOC-insoluble matrix. This process could be inhibited by the amino-terminal 70 kD fragment of FN, showing that FN delta III1-7 follows an assembly pathway similar to FN. The progression of FN delta III1-7 assembly differed from native FN in that the recFN became DOC-insoluble more quickly. In contrast, RGD- recFNs were not formed into fibrils except when added in combination with native FN. These results show that the RGD sequence is essential for the initiation step but fibrils can form independently of the III1-7 modules. The altered rate of FN delta III1-7 assembly suggests that one function of the missing repeats might be to modulate an early stage of matrix formation.
Skip Nav Destination
Article navigation
15 July 1996
Article|
July 15 1996
Altered rate of fibronectin matrix assembly by deletion of the first type III repeats.
J L Sechler,
J L Sechler
Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
Search for other works by this author on:
Y Takada,
Y Takada
Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
Search for other works by this author on:
J E Schwarzbauer
J E Schwarzbauer
Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
Search for other works by this author on:
J L Sechler
Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
Y Takada
Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
J E Schwarzbauer
Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1996) 134 (2): 573–583.
Citation
J L Sechler, Y Takada, J E Schwarzbauer; Altered rate of fibronectin matrix assembly by deletion of the first type III repeats.. J Cell Biol 15 July 1996; 134 (2): 573–583. doi: https://doi.org/10.1083/jcb.134.2.573
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement