In the Drosophila embryo, the alphaPS2betaPS integrin heterodimer is localized tightly at the termini of the multinucleate muscles where they attach to the alphaPS1betaPS-containing epidermal tendon cells. Here we examine the basis for alphaPS2betaPS integrin subcellular localization. We show that the betaPS cytoplasmic tail is sufficient to direct the localization of a heterologous transmembrane protein, CD2, to the muscle termini in vivo. This localization does not occur via an association with structures set up by the endogenous betaPS integrins, since it can occur even in the absence of the betaPS protein. Furthermore, the subcellular localization of the alphaPS2betaPS integrin is not dependent on any other interactions between the muscles and the tendon cells. In embryos that lack the segmental tendon cells, due to a mutation removing the related segment polarity genes engrailed and invected, alphaPS2betaPS is still localized to the muscle termini even though the ventral longitudinal muscles are not attached to the epidermis, but instead are attached end to end. Thus the alphaPS2betaPS integrin can be localized by an intracellular mechanism within the muscles. Our results challenge the view that the transmission of signals from the extracellular environment via integrins is required for the organization of the cytoskeleton and the resultant cellular polarity.

This content is only available as a PDF.
You do not currently have access to this content.