Phagocytosis in macrophages is often studied using inert polymer microspheres. An implicit assumption in these studies is that such particles contain little or no specific information in their structure that affects their intracellular fate. We tested that assumption by examining macrophage phagosomes containing different kinds of particles and found that although all particles progressed directly to lysosomes, their subsequent fates varied. Within 15 min of phagocytosis, >90% of phagosomes containing opsonized sheep erythrocytes, poly-e-caprolactone microspheres, polystyrene microspheres (PS), or polyethylene glycol-conjugated PS merged with the lysosomal compartment. After that point, however, the characteristics of phagolysosomes changed in several ways that indicated differing degrees of continued interaction with the lysosomal compartment. Sheep erythrocyte phagolysosomes merged together and degraded their contents quickly, poly-e-caprolactone phagolysosomes showed intermediate levels of interaction, and PS phagolysosomes became isolated within the cytoplasm. PS were relatively inaccessible to an endocytic tracer, Texas red dextran, added after phagocytosis. Moreover, immunofluorescent staining for the lysosomal protease cathepsin L decreased in PS phagolysosomes to 23% by 4 h after phagocytosis, indicating degradation of the enzyme without replacement. Finally, PS surface labeled with fluorescein-labeled albumin showed a markedly reduced rate of protein degradation in phagolysosomes, when compared to rates measured for proteins in or on other particles. Thus, particle chemistry affected both the degree of postlysosomal interactions with other organelles and, consequently, the intracellular half-life of particle-associated proteins. Such properties may affect the ability of particles to deliver macromolecules into the major histocompatibility complex class I and II antigen presentation pathways.
Skip Nav Destination
Article navigation
15 February 1996
Article|
February 15 1996
Different fates of phagocytosed particles after delivery into macrophage lysosomes.
Y K Oh,
Y K Oh
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Search for other works by this author on:
J A Swanson
J A Swanson
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Search for other works by this author on:
Y K Oh
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
J A Swanson
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1996) 132 (4): 585–593.
Citation
Y K Oh, J A Swanson; Different fates of phagocytosed particles after delivery into macrophage lysosomes.. J Cell Biol 15 February 1996; 132 (4): 585–593. doi: https://doi.org/10.1083/jcb.132.4.585
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement