The Drosophila Glued gene product shares sequence homology with the p150 component of vertebrate dynactin. Dynactin is a multiprotein complex that stimulates cytoplasmic dynein-mediated vesicle motility in vitro. In this report, we present biochemical, cytological, and genetic evidence that demonstrates a functional similarity between the Drosophila Glued complex and vertebrate dynactin. We show that, similar to the vertebrate homologues in dynactin, the Glued polypeptides are components of a 20S complex. Our biochemical studies further reveal differential expression of the Glued polypeptides, all of which copurify as microtubule-associated proteins. In our analysis of the Glued polypeptides encoded by the dominant mutation, Glued, we identify a truncated polypeptide that fails to assemble into the wild-type 20S complex, but retains the ability to copurify with microtubules. The spatial and temporal distribution of the Glued complex during oogenesis is shown by immunocytochemistry methods to be identical to the pattern previously described for cytoplasmic dynein. Significantly, the pattern of Glued distribution in oogenesis is dependent on dynein function, as well as several other gene products known to be required for proper dynein localization. In genetic complementation studies, we find that certain mutations in the cytoplasmic dynein heavy chain gene Dhc64C act as dominant suppressors or enhancers of the rough eye phenotype of the dominant Glued mutation. Furthermore, we show that a mutation that was previously isolated as a suppressor of the Glued mutation is an allele of Dhc64C. Together with the observed dependency of Glued localization on dynein function, these genetic interactions demonstrate a functional association between the Drosophila dynein motor and Glued complexes.
Skip Nav Destination
Article navigation
15 October 1995
Article|
October 15 1995
Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex.
M McGrail,
M McGrail
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Search for other works by this author on:
J Gepner,
J Gepner
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Search for other works by this author on:
A Silvanovich,
A Silvanovich
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Search for other works by this author on:
S Ludmann,
S Ludmann
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Search for other works by this author on:
M Serr,
M Serr
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Search for other works by this author on:
T S Hays
T S Hays
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Search for other works by this author on:
M McGrail
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
J Gepner
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
A Silvanovich
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
S Ludmann
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
M Serr
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
T S Hays
Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1995) 131 (2): 411–425.
Citation
M McGrail, J Gepner, A Silvanovich, S Ludmann, M Serr, T S Hays; Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex.. J Cell Biol 15 October 1995; 131 (2): 411–425. doi: https://doi.org/10.1083/jcb.131.2.411
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement