Neuropeptide precursors are traditionally viewed as molecules destined to be cleaved into bioactive peptides, which are then released from the cell to act on target cell surface receptors. In this report we demonstrate nuclear localization of the enkephalin precursor, proenkephalin, in rodent and human embryonic fibroblasts (Swiss 3T3 and MRC-5 cells) and in rodent myoblasts (C2C12 cells). Nuclear proenkephalin, detected by immunofluorescence with a panel of antiproenkephalin monoclonal antibodies, is distributed predominantly in three patterns. Selective abolition of these patterns with salt, nuclease, or methanol is associated with liberation of immunoprecipitable proenkephalin into the extraction supernatant. Proenkephalin antigenic domains, mapped using phage display libraries and synthetic peptides, are differentially revealed in the three distribution patterns. Selective epitope revelation may reflect different conformational forms of proenkephalin or its existence in complexes with other nuclear proteins, forms which therefore have different biochemical associations with the nuclear substructure. In fibroblast cell populations in transition to growth arrest, nuclear proenkephalin responds promptly to mitogen withdrawal and cell-cell contact by transient, virtually synchronous unmasking of multiple antigenic domains in a fine punctate distribution. A similar phenomenon is observed in myoblasts undergoing differentiation. The acknowledgment of growth arrest and differentiation signals by nuclear proenkephalin suggests its integration with transduction pathways mediating these signals. To begin to address the mechanism of nuclear targeting, we have transfected mutated and nonmutated proenkephalin into COS (African green monkey kidney) cells. Nonmutated proenkephalin is localized exclusively in the cytoplasm; however, proenkephalin mutated at the first ATG codon, or devoid of its signal peptide sequence, is targeted to the nucleus as well as to the cytoplasm. From this we speculate that nuclear proenkephalin arises from a primary translation product that lacks a signal peptide sequence because of initiation at a different site.
Skip Nav Destination
Article navigation
15 September 1995
Article|
September 15 1995
Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals.
A Böttger,
A Böttger
Department of Anatomy and Physiology, University of Dundee, United Kingdom.
Search for other works by this author on:
B A Spruce
B A Spruce
Department of Anatomy and Physiology, University of Dundee, United Kingdom.
Search for other works by this author on:
A Böttger
Department of Anatomy and Physiology, University of Dundee, United Kingdom.
B A Spruce
Department of Anatomy and Physiology, University of Dundee, United Kingdom.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1995) 130 (6): 1251–1262.
Citation
A Böttger, B A Spruce; Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals.. J Cell Biol 15 September 1995; 130 (6): 1251–1262. doi: https://doi.org/10.1083/jcb.130.6.1251
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement