We discovered by using high resolution video microscopy, that membranes become attached selectively to the growing plus ends of microtubules by membrane/microtubule tip attachment complexes (TACs) in interphase-arrested, undiluted, Xenopus egg extracts. Persistent plus end growth of stationary microtubules pushed the membranes into thin tubules and dragged them through the cytoplasm at the approximately 20 microns/min velocity typical of free plus ends. Membrane tubules also remained attached to plus ends when they switched to the shortening phase of dynamic instability at velocities typical of free ends, 50-60 microns/min. Over time, the membrane tubules contacted and fused with one another along their lengths, forming a polygonal network much like the distribution of ER in cells. Several components of the membrane networks formed by TACs were identified as ER by immunofluorescent staining using antibodies to ER-resident proteins. TAC motility was not inhibited by known inhibitors of microtubule motor activity, including 5 mM AMP-PNP, 250 microM orthovanadate, and ATP depletion. These results show that membrane/microtubule TACs enable polymerizing ends to push and depolymerizing ends to pull membranes into thin tubular extensions and networks at fast velocities.
Skip Nav Destination
Article navigation
1 September 1995
Article|
September 01 1995
Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts.
C M Waterman-Storer,
C M Waterman-Storer
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
Search for other works by this author on:
J Gregory,
J Gregory
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
Search for other works by this author on:
S F Parsons,
S F Parsons
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
Search for other works by this author on:
E D Salmon
E D Salmon
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
Search for other works by this author on:
C M Waterman-Storer
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
J Gregory
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
S F Parsons
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
E D Salmon
Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1995) 130 (5): 1161–1169.
Citation
C M Waterman-Storer, J Gregory, S F Parsons, E D Salmon; Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts.. J Cell Biol 1 September 1995; 130 (5): 1161–1169. doi: https://doi.org/10.1083/jcb.130.5.1161
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement