Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion. According to the current concept, syntaxin 1 and SNAP-25 are members of larger protein families, collectively designated as target-SNAP receptors (t-SNAREs), whose specific localization to subcellular membranes define where transport vesicles bind and fuse. Here we demonstrate that major pools of syntaxin 1 and SNAP-25 recycle with SVs. Both proteins cofractionate with SVs and clathrin-coated vesicles upon subcellular fractionation. Using recombinant proteins as standards for quantitation, we found that syntaxin 1 and SNAP-25 each comprise approximately 3% of the total protein in highly purified SVs. Thus, both proteins are significant components of SVs although less abundant than synaptobrevin (8.7% of the total protein). Immunoisolation of vesicles using synaptophysin and syntaxin specific antibodies revealed that most SVs contain syntaxin 1. The widespread distribution of both syntaxin 1 and SNAP-25 on SVs was further confirmed by immunogold electron microscopy. Botulinum neurotoxin C1, a toxin that blocks exocytosis by proteolyzing syntaxin 1, preferentially cleaves vesicular syntaxin 1. We conclude that t-SNAREs participate in SV recycling in what may be functionally distinct forms.

This content is only available as a PDF.
You do not currently have access to this content.