Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A-coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion.
Skip Nav Destination
Article navigation
1 October 1994
Article|
October 01 1994
Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent.
M J Brown
Department of Physiology, University of Connecticut Health Center, Farmington 06030.
L M Loew
Department of Physiology, University of Connecticut Health Center, Farmington 06030.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1994) 127 (1): 117–128.
Citation
M J Brown, L M Loew; Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent.. J Cell Biol 1 October 1994; 127 (1): 117–128. doi: https://doi.org/10.1083/jcb.127.1.117
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement