Cell motility is dependent upon the reorganization of the cellular cytoskeleton. Actin filaments form the major component of the cytoskeleton and respond rapidly to serum growth factors. We have previously shown that myoblasts sort the two cytoskeletal beta- and gamma-actin isoform mRNAs to different intracellular regions and that only beta-actin mRNA was associated with peripheral regions of cell motility (Hill, M.A. and P. Gunning. 1993. J. Cell Biol. 122: 825-832). We now show by in situ hybridization that 3T3 fibroblasts similarly sort actin isoform mRNAs and that peripheral beta-actin mRNA is regulated by serum. In the absence of serum, we could not detect beta-actin mRNA at the periphery. Addition of serum rapidly redistributed beta-actin mRNA to the periphery. gamma-actin mRNA distribution was not altered by serum addition at any time. Both proteins, as identified by immunochemistry with isoform-specific antibodies, were found in similar cellular structures. Serum-stimulated cell motility is mediated through the GTPase signal transduction pathway. We find that an RNA-binding protein, p62, that is part of this pathway, displays a localization pattern similar to beta-actin mRNA. Our results suggest a new biological mechanism which integrates signal transduction with the supply of an architectural component required for membrane remodeling. We propose that active transport of beta-actin mRNA to regions of cell motility is one possible objective of these signal transduction pathways.

This content is only available as a PDF.
You do not currently have access to this content.