We have analyzed the dynamics of neuronal intermediate filaments in living neurons by using the method of photobleaching of fluorescently-labeled neurofilament L protein and immunoelectron microscopy of incorporation sites of biotinylated neurofilament L protein. Low-light-level imaging and photobleaching of growing axons of mouse sensory neurons did not affect the rate of either axonal growth or the addition of intermediate filament structures at the axon terminal, suggesting that any perturbations caused by these optical methods would be minimal. After laser photobleaching, recovery of fluorescence did occur slowly with a recovery half-time of 40 min. Furthermore, we observed a more rapid fluorescence recovery in growing axons than in quiescent ones, indicating a growth-dependent regulation of the turnover rate. Incorporation sites of biotin-labeled neurofilament L protein were localized as numerous discrete sites along the axon, and they slowly elongated to become continuous arrays 24 h after injection. Collectively, these results indicate that neuronal intermediate filaments in growing axons turn over within the small area of the axoplasm possibly by the mechanism of lateral and segmental incorporation of new subunits.
Skip Nav Destination
Article navigation
15 April 1993
Article|
April 15 1993
Dynamics of the neuronal intermediate filaments.
S Okabe,
S Okabe
Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
H Miyasaka,
H Miyasaka
Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
N Hirokawa
N Hirokawa
Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.
Search for other works by this author on:
S Okabe
Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.
H Miyasaka
Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.
N Hirokawa
Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1993) 121 (2): 375–386.
Citation
S Okabe, H Miyasaka, N Hirokawa; Dynamics of the neuronal intermediate filaments.. J Cell Biol 15 April 1993; 121 (2): 375–386. doi: https://doi.org/10.1083/jcb.121.2.375
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement