The development of a well adapted strain of herpes virus has been studied in HeLa cells using thin sectioning techniques for electron microscopy. Particular attention was directed to events in the cytoplasm and certain new features were observed. Profuse immature particles with a nucleoid and single limiting membrane were present in the nuclei of infected cells, often in crystalline array; morphologically indistinguishable immature particles were also found very frequently in the cytoplasm. Cells with such particles were intact and well preserved, and contained smooth vacuoles apparently derived from the Golgi component of the endoplasmic reticulum. The cytoplasmic particles escaped from the cells by bulging out as buds through the cell membrane or through that of the cytoplasmic vacuoles until they were attached only by a pedicle and then became free. During this process the particles were gradually enclosed by the membrane through which they passed and carried a coat of it with them as they matured. After permanganate fixation the triple-layered structure of the cell membrane and vacuolar membranes was evident and was identical with that of the outer coat of the mature virus. These findings are discussed both in relation to different types of virus structure and to function in the endoplasmic reticulum and cell membrane.

This content is only available as a PDF.
You do not currently have access to this content.