We used high-resolution video microscopy to visualize microtubule dynamic instability in extracts of interphase sea urchin eggs and to analyze the changes that occur upon addition of 0.8-2.5 microM okadaic acid, an inhibitor of phosphatase 1 and 2A (PP1, PP2a) (Bialojan, D., and A. Takai. 1988. Biochem. J. 256:283-290). Microtubule plus-ends in these extracts oscillated between the elongation and shortening phases of dynamic instability at frequencies typical for interphase cells. Switching from elongation to shortening (catastrophe) was frequent, but microtubules persisted and grew long because of frequent switching back to elongation (rescue). Addition of okadaic acid to the extract induced rapid (< 5 min) conversion to short, dynamic microtubules typical of mitosis. The frequency of catastrophe doubled and the velocities of elongation and shortening increased slightly; however, the major change was an elimination of rescue. Thus, modulation of the rescue frequency by phosphorylation-dependent mechanisms may be a major regulatory pathway for selectively controlling microtubule dynamics without dramatically changing velocities of microtubule elongation and shortening.
Skip Nav Destination
Article navigation
1 December 1992
Article|
December 01 1992
Okadaic acid induces interphase to mitotic-like microtubule dynamic instability by inactivating rescue.
N R Gliksman,
N R Gliksman
Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
Search for other works by this author on:
S F Parsons,
S F Parsons
Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
Search for other works by this author on:
E D Salmon
E D Salmon
Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
Search for other works by this author on:
N R Gliksman
Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
S F Parsons
Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
E D Salmon
Department of Biology, University of North Carolina, Chapel Hill 27599-3280.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1992) 119 (5): 1271–1276.
Citation
N R Gliksman, S F Parsons, E D Salmon; Okadaic acid induces interphase to mitotic-like microtubule dynamic instability by inactivating rescue.. J Cell Biol 1 December 1992; 119 (5): 1271–1276. doi: https://doi.org/10.1083/jcb.119.5.1271
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement