Regulation of myristoylCoA pools in Saccharomyces cerevisiae plays an important role in modulating the activity of myristoylCoA:protein N-myristoyltransferase (NMT), an essential enzyme with an ordered Bi Bi reaction that catalyzes the transfer of myristate from myristoylCoA to greater than or equal to 12 cellular proteins. At least two pathways are available for generating myristoylCoA: de novo synthesis by the multifunctional, multisubunit fatty acid synthetase complex (FAS) and activation of exogenous myristate by acylCoA synthetase. The FAA1 (fatty acid activation) gene has been isolated by genetic complementation of a faal mutant. This single copy gene, which maps to the right arm of chromosome XV, specifies a long chain acylCoA synthetase of 700 amino acids. Analyses of strains containing NMT1 and a faal null mutation indicated that FAA1 is not essential for vegetative growth when an active de novo pathway for fatty acid synthesis is present. The role of FAA1 in cellular lipid metabolism and protein N-myristoylation was therefore assessed in strains subjected to biochemical or genetic blockade of FAS. At 36 degrees C, FAA1 is required for the utilization of exogenous myristate by NMT and for the synthesis of several phospholipid species. This requirement is not apparent at 24 or 30 degrees C, suggesting that S. cerevisiae contains another acylCoA synthetase activity whose chain length and/or temperature optima may differ from Faalp.
Skip Nav Destination
Article navigation
1 May 1992
Article|
May 01 1992
Isolation of a Saccharomyces cerevisiae long chain fatty acyl:CoA synthetase gene (FAA1) and assessment of its role in protein N-myristoylation.
R J Duronio,
R J Duronio
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
Search for other works by this author on:
L J Knoll,
L J Knoll
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
Search for other works by this author on:
J I Gordon
J I Gordon
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
Search for other works by this author on:
R J Duronio
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
L J Knoll
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
J I Gordon
Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1992) 117 (3): 515–529.
Citation
R J Duronio, L J Knoll, J I Gordon; Isolation of a Saccharomyces cerevisiae long chain fatty acyl:CoA synthetase gene (FAA1) and assessment of its role in protein N-myristoylation.. J Cell Biol 1 May 1992; 117 (3): 515–529. doi: https://doi.org/10.1083/jcb.117.3.515
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement