Hyalin is a large (ca. 350 x 10(3) kD by gel electrophoresis) molecule that contributes to the hyalin layer surrounding the sea urchin embryo. In previous work a mAb (McA Tg-HYL), specific for hyalin, was found to inhibit cell-hyalin adhesion and block morphogenesis of whole embryos (Adelson, D. L., and T. D. Humphreys. 1988. Development. 104:391-402). In this report, hyalin ultrastructure was examined via rotary shadowing. Hyalin appeared to be a filamentous molecule approximately 75-nm long with a globular "head" about 12 nm in diameter that tended to form aggregates by associating head to head. Hyalin molecules tended to associate with a distinct high molecular weight globular particle ("core"). In fractions containing the core particle often more than one hyalin molecule were seen to be associated with the core. The core particle maintained a tenacious association with hyalin throughout purification procedures. The site(s) of McA Tg-HYL binding to the hyalin molecule were visualized by decorating purified hyalin with the antibody and then rotary shadowing the complex. In these experiments, McA Tg-HYL attached to the hyalin filament near the head region in a pattern suggesting that more than one antibody binding site exists on the hyalin filament. From the ultrastructural data and from the cell adhesion data presented earlier we conclude that hyalin is a filamentous molecule that binds to other hyalin molecules and contains multiple cell binding sites. Attempts were made to demonstrate the existence of lower molecular weight hyalin precursors. Whilst no such precursors could be identified by immunoprecipitation of in vivo labeled embryo lysates, immunoprecipitation of in vitro translation products suggested such precursors (ca 40 x 10(3) kD) might exist.

This content is only available as a PDF.
You do not currently have access to this content.