Cell adhesion plays a fundamental role in the organization of cells in differentiated organs, cell motility, and immune response. A novel micromanipulation method is employed to quantify the direct contribution of surface adhesion receptors to the physical strength of cell adhesion. In this technique, a cell is brought into contact with a glass-supported planar membrane reconstituted with a known concentration of a given type of adhesion molecules. After a period of incubation (5-10 min), the cell is detached from the planar bilayer by pulling away the pipette holding the cell in the direction perpendicular to the glass-supported planar bilayer. In particular, we investigated the adhesion between a Jurkat cell expressing CD2 and a glass-supported planar bilayer containing either the glycosyl-phosphatidylinositol (GPI) or the transmembrane (TM) isoform of the counter-receptor lymphocyte function-associated antigen 3 (LFA-3) at a concentration of 1,000 molecules/microns 2. In response to the pipette force the Jurkat cells that adhered to the planar bilayer containing the GPI isoform of LFA-3 underwent extensive elongation. When the contact radius was reduced by approximately 50%, the cell then detached quickly from its substrate. The aspiration pressure required to detach a Jurkat cell from its substrate was comparable to that required to detach a cytotoxic T cell from its target cell. Jurkat cells that had been separated from the substrate again adhered strongly to the planar bilayer when brought to proximity by micromanipulation. In experiments using the planar bilayer containing the TM isoform of LFA-3, Jurkat cells detached with little resistance to micromanipulation and without changing their round shape.
Skip Nav Destination
Article navigation
15 February 1992
Article|
February 15 1992
Micromanipulation of adhesion of a Jurkat cell to a planar bilayer membrane containing lymphocyte function-associated antigen 3 molecules.
A Tözeren,
A Tözeren
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
K L Sung,
K L Sung
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
L A Sung,
L A Sung
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
M L Dustin,
M L Dustin
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
P Y Chan,
P Y Chan
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
T A Springer,
T A Springer
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
S Chien
S Chien
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Search for other works by this author on:
A Tözeren
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
K L Sung
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
L A Sung
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
M L Dustin
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
P Y Chan
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
T A Springer
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
S Chien
Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1992) 116 (4): 997–1006.
Citation
A Tözeren, K L Sung, L A Sung, M L Dustin, P Y Chan, T A Springer, S Chien; Micromanipulation of adhesion of a Jurkat cell to a planar bilayer membrane containing lymphocyte function-associated antigen 3 molecules.. J Cell Biol 15 February 1992; 116 (4): 997–1006. doi: https://doi.org/10.1083/jcb.116.4.997
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement