The Saccharomyces cerevisiae SIS1 gene was identified as a high copy number suppressor of the slow growth phenotype of strains containing mutations in the SIT4 gene, which encodes a predicted serine/threonine protein phosphatase. The SIS1 protein is similar to bacterial dnaJ proteins in the amino-terminal third and carboxyl-terminal third of the proteins. In contrast, the middle third of SIS1 is not similar to dnaJ proteins. This region of SIS1 contains a glycine/methionine-rich region which, along with more amino-terminal sequences, is required for SIS1 to associate with a protein of apparent molecular mass of 40 kD. The SIS1 gene is essential. Strains limited for the SIS1 protein accumulate cells that appear blocked for migration of the nucleus from the mother cell into the daughter cell. In addition, many of the cells become very large and contain a large vacuole. The SIS1 protein is localized throughout the cell but is more concentrated at the nucleus. About one-fourth of the SIS1 protein is released from a nuclear fraction upon treatment with RNase. We also show that overexpression of YDJ1, another yeast protein with similarity to bacterial dnaJ proteins, can not substitute for SIS1.
Skip Nav Destination
Article navigation
15 August 1991
Article|
August 15 1991
Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins.
M M Luke,
M M Luke
Cold Spring Harbor Laboratory, New York 11724-2212.
Search for other works by this author on:
A Sutton,
A Sutton
Cold Spring Harbor Laboratory, New York 11724-2212.
Search for other works by this author on:
K T Arndt
K T Arndt
Cold Spring Harbor Laboratory, New York 11724-2212.
Search for other works by this author on:
M M Luke
Cold Spring Harbor Laboratory, New York 11724-2212.
A Sutton
Cold Spring Harbor Laboratory, New York 11724-2212.
K T Arndt
Cold Spring Harbor Laboratory, New York 11724-2212.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1991) 114 (4): 623–638.
Citation
M M Luke, A Sutton, K T Arndt; Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins.. J Cell Biol 15 August 1991; 114 (4): 623–638. doi: https://doi.org/10.1083/jcb.114.4.623
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement