Prior studies have given no evidence for regulation of vitamin D receptor (VDR) compartmentalization or subcellular organization. Microwave fixation (9-15 s) and an indirect immunodetection system of avidin-biotin enhancement and phycoerythrin fluorophore resulted in sufficient spatial and temporal resolution to allow analysis of these processes. We studied cultured fibroblasts from normals or from patients with four different types of hereditary defect compromising VDR function (mutant cells). Compartmentalization of VDRs in the absence of 1,25-dihydroxyvitamin D3 (calcitriol) was regulated by serum or estrogen. VDRs were mainly cytoplasmic in cells cultured without serum and phenol red, but VDRs were mainly intranuclear after addition of serum or an estrogen to cells for at least 18 h (slow regulation). Calcitriol initiated a rapid and multistep process (rapid regulation) of reorganization in a portion of VDRs: clumping within 15-45 s, alignment of clumps along fibrils within 30-45 s, perinuclear accumulation of clumps within 45-90 s, and intranuclear accumulation of clumps within 1-3 min. We found similar rapid effects of calcitriol on VDRs in various other types of cultured cells. These sequential VDR pattern changes showed calcitriol dose dependency and calcitriol analogue specificity characteristic for the VDR. In mutant fibroblasts VDR pattern changes after calcitriol were absent or severely disturbed at selected steps. Treatment of normal cells with wheat germ agglutinin, which blocks protein transport through nuclear pores, also blocked calcitriol-dependent translocation of VDRs. We conclude that immunocytology after microwave fixation provides evidence for regulation of VDR organization and localization.

This content is only available as a PDF.
You do not currently have access to this content.