The first primary structure for a nonmuscle myosin light chain kinase (nmMLCK) has been determined by elucidation of the cDNA sequence encoding the protein kinase from chicken embryo fibroblasts, and insight into the molecular mechanism of calmodulin (CaM) recognition and activation has been obtained by the use of site-specific mutagenesis and suppressor mutant analysis. Treatment of chicken and mouse fibroblasts with antisense oligodeoxynucleotides based on the cDNA sequence results in an apparent decrease in MLCK levels, an altered morphology reminiscent of that seen in v-src-transformed cells, and a possible effect on cell proliferation. nmMLCK is distinct from and larger than smooth muscle MLCK (smMLCK), although their extended DNA sequence identity is suggestive of a close genetic relationship not found with skeletal muscle MLCK. The analysis of 20 mutant MLCKs indicates that the autoinhibitory and CaM recognition activities are centered in distinct but functionally coupled amino acid sequences (residues 1,068-1,080 and 1,082-1,101, respectively). Analysis of enzyme chimeras, random mutations, inverted sequences, and point mutations in the 1,082-1,101 region demonstrates its functional importance for CaM recognition but not autoinhibition. In contrast, certain mutations in the 1,068-1,080 region result in a constitutively active MLCK that still binds CaM. These results suggest that CaM/protein kinase complexes use similar structural themes to transduce calcium signals into selective biological responses, demonstrate a direct link between nmMLCK and non-muscle cell function, and provide a firm basis for genetic studies and analyses of how nmMLCK is involved in development and cell proliferation.
Skip Nav Destination
Article navigation
1 September 1990
Article|
September 01 1990
Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity.
M O Shoemaker,
M O Shoemaker
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
W Lau,
W Lau
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
R L Shattuck,
R L Shattuck
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
A P Kwiatkowski,
A P Kwiatkowski
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
P E Matrisian,
P E Matrisian
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
L Guerra-Santos,
L Guerra-Santos
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
E Wilson,
E Wilson
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
T J Lukas,
T J Lukas
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
L J Van Eldik,
L J Van Eldik
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
D M Watterson
D M Watterson
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Search for other works by this author on:
M O Shoemaker
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
W Lau
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
R L Shattuck
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
A P Kwiatkowski
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
P E Matrisian
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
L Guerra-Santos
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
E Wilson
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
T J Lukas
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
L J Van Eldik
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
D M Watterson
Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1990) 111 (3): 1107–1125.
Citation
M O Shoemaker, W Lau, R L Shattuck, A P Kwiatkowski, P E Matrisian, L Guerra-Santos, E Wilson, T J Lukas, L J Van Eldik, D M Watterson; Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity.. J Cell Biol 1 September 1990; 111 (3): 1107–1125. doi: https://doi.org/10.1083/jcb.111.3.1107
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement