Development of the cellular slime mold Dictyostelium discoideum is initiated by the removal of nutrients, and results in formation of a mature fruiting body composed of two cell types, the stalk and spore cells. A considerable body of evidence supports the hypothesis that cytoplasmic pH may be an essential regulator of the choice to differentiate in either the prestalk or prespore pathway. We have devised methods for measurement and analysis of intracellular pH in developing Dictyostelium amebae in order to assess directly the potential role of cytoplasmic pH in regulating the pathway of differentiation. The intracellular pH of single D. discoideum amebae during development and in intact slugs has been measured using the pH-sensitive indicator pyranine in a low light level microspectrofluorometer. We have used the ATP-mediated loading method to introduce pyranine into these cells. Cells loaded by the ATP method appear healthy, have no detectable defects in development, and exhibit a similar population distribution of intracellular pH to those loaded by sonication. The intracellular pH of populations comprised of single amebae was found to undergo a transient acidification during development resulting in a bimodal distribution of intracellular pH. The subpopulations were characterized by fitting two gaussian distributions to the data. The number of cells in the acidic intracellular pH subpopulation reached a maximum 4 h after initiation of development, and had returned to a low level by 7 h of development. In addition, a random sample of single amebae within a slug had a median intracellular pH of 7.2, nearly identical to the median pH (7.19) of similarly treated vegetative cells. No gradient of intracellular pH along the anterior to posterior axis of the slug was detected. Our data demonstrate the existence of two distinct subpopulations of cells before the aggregation stage of development in Dictyostelium, and offers support for the hypothesis that changes in intracellular pH contribute to development in D. discoideum.
Skip Nav Destination
Article navigation
1 June 1990
Article|
June 01 1990
Cytoplasmic pH of Dictyostelium discoideum amebae during early development: identification of two cell subpopulations before the aggregation stage.
R Furukawa,
R Furukawa
Department of Biochemistry, University of Georgia, Athens 30602.
Search for other works by this author on:
J E Wampler,
J E Wampler
Department of Biochemistry, University of Georgia, Athens 30602.
Search for other works by this author on:
M Fechheimer
M Fechheimer
Department of Biochemistry, University of Georgia, Athens 30602.
Search for other works by this author on:
R Furukawa
Department of Biochemistry, University of Georgia, Athens 30602.
J E Wampler
Department of Biochemistry, University of Georgia, Athens 30602.
M Fechheimer
Department of Biochemistry, University of Georgia, Athens 30602.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1990) 110 (6): 1947–1954.
Citation
R Furukawa, J E Wampler, M Fechheimer; Cytoplasmic pH of Dictyostelium discoideum amebae during early development: identification of two cell subpopulations before the aggregation stage.. J Cell Biol 1 June 1990; 110 (6): 1947–1954. doi: https://doi.org/10.1083/jcb.110.6.1947
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement