Hepatitis B surface antigen (HBsAg), the major coat protein of hepatitis B virus, is also independently secreted from infected cells as a lipoprotein particle. Secretion proceeds without signal sequence removal or cleavage of other segments of the polypeptide. We have examined the synthesis and transport of HBsAg in cultured cells expressing the cloned surface antigen gene. Our results show that HBsAg is initially synthesized as a integral membrane protein. This transmembrane form is slowly converted to a secreted lipoprotein complex in the lumen of the endoplasmic reticulum via a series of definable intermediates, after which it is secreted from the cell. This unusual export process shares many features with the assembly and budding reactions of conventional enveloped animal viruses. However, it differs importantly in its absence of a requirement for the participation of nucleocapsid or other viral proteins.

This content is only available as a PDF.
You do not currently have access to this content.