Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.
Skip Nav Destination
Article navigation
1 November 1988
Article|
November 01 1988
Evolutionary conservation of tissue-specific lymphocyte-endothelial cell recognition mechanisms involved in lymphocyte homing.
N W Wu,
N W Wu
Department of Pathology, Stanford University School of Medicine, California 94305.
Search for other works by this author on:
S Jalkanen,
S Jalkanen
Department of Pathology, Stanford University School of Medicine, California 94305.
Search for other works by this author on:
P R Streeter,
P R Streeter
Department of Pathology, Stanford University School of Medicine, California 94305.
Search for other works by this author on:
E C Butcher
E C Butcher
Department of Pathology, Stanford University School of Medicine, California 94305.
Search for other works by this author on:
N W Wu
Department of Pathology, Stanford University School of Medicine, California 94305.
S Jalkanen
Department of Pathology, Stanford University School of Medicine, California 94305.
P R Streeter
Department of Pathology, Stanford University School of Medicine, California 94305.
E C Butcher
Department of Pathology, Stanford University School of Medicine, California 94305.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 107 (5): 1845–1851.
Citation
N W Wu, S Jalkanen, P R Streeter, E C Butcher; Evolutionary conservation of tissue-specific lymphocyte-endothelial cell recognition mechanisms involved in lymphocyte homing.. J Cell Biol 1 November 1988; 107 (5): 1845–1851. doi: https://doi.org/10.1083/jcb.107.5.1845
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement