Oocytes, notably those of amphibia, accumulate large pools of nonfilamentous ("soluble") actin, both in the cytoplasm and in the nucleoplasm, which coexist with extensive actin filament arrays in the cytoplasmic cortex. Because the regulation of oogenically accumulated actin is important in various processes of oogenesis, egg formation, fertilization and early embryogenesis, we have purified and characterized the major actin-binding proteins present in oocytes of Xenopus laevis. Here we report that the major actin-binding component in the ooplasm, but not in the nucleus, is a polypeptide of Mr approximately 93,000 on SDS-PAGE that reduces actin polymerization in vitro in a Ca2+-dependent manner but promotes nucleation events, and also reduces the viscosity of actin polymers, indicative of severing activity. We have raised antibodies against the purified oocyte protein and show that it is different from villin, is also prominent in unfertilized eggs and early embryos and is very similar to a corresponding protein present in various tissues and in cultured cells, and appears to be spread over the cytoplasm. Using these antibodies we have isolated a cDNA clone from a lambda gt11 expression library of ovarian poly(A)+-RNA. Determination of the amino acid sequence derived from the nucleotide sequence, together with the directly determined sequence of the amino terminus of the native protein, has shown that this clone encodes the carboxy-terminal half of gelsolin. We conclude that gelsolin is the major actin-modulating protein in oogenesis and early embryogenesis of amphibia, and probably also of other species, that probably also plays an important role in the various Ca2+-dependent gelation and contractility processes characteristic of these development stages.
Skip Nav Destination
Article navigation
1 October 1988
Article|
October 01 1988
Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein.
T Ankenbauer,
T Ankenbauer
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
Search for other works by this author on:
J A Kleinschmidt,
J A Kleinschmidt
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
Search for other works by this author on:
J Vandekerckhove,
J Vandekerckhove
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
Search for other works by this author on:
W W Franke
W W Franke
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
Search for other works by this author on:
T Ankenbauer
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
J A Kleinschmidt
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
J Vandekerckhove
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
W W Franke
Division of Membrane Biology and Biochemistry, German Cancer Research Center, Heidelberg.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 107 (4): 1489–1498.
Citation
T Ankenbauer, J A Kleinschmidt, J Vandekerckhove, W W Franke; Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein.. J Cell Biol 1 October 1988; 107 (4): 1489–1498. doi: https://doi.org/10.1083/jcb.107.4.1489
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement