To study the possible mechanism of microtubule turnover in interphase cells, we have used the 266-nm wavelength of a short-pulsed Nd/YAG laser to transect microtubules in situ in PtK2 cells at predefined regions. The regrowth and shrinkage of the transected microtubules have been examined by staining the treated cells with antitubulin mAb at various time points after laser irradiation. The results demonstrate that microtubules grow back into the transected zones individually; neither simultaneous growth nor shrinkage of all microtubules has been observed. The half-time of replacement of laser-dissociated microtubules is observed to be approximately 10 min. On the other hand, exposure of the core of the microtubule, which is expected to consist almost completely of GDP-tubulin, by transecting the internal regions of the microtubule does not render the remaining polymer catastrophically disassembled, and most transected microtubules with free minus ends do not quickly disappear. Taken together, these results suggest that most microtubules in cultured interphase cells exhibit some properties of dynamic instability (individual regrowth or shrinkage); however, other factors in addition to the hydrolysis of GTP-tubulin need to be involved in modulating the dynamics and the stability of these cytoplasmic microtubules.
Skip Nav Destination
Article navigation
1 September 1988
Article|
September 01 1988
Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable.
W Tao,
W Tao
Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.
Search for other works by this author on:
R J Walter,
R J Walter
Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.
Search for other works by this author on:
M W Berns
M W Berns
Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.
Search for other works by this author on:
W Tao
Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.
R J Walter
Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.
M W Berns
Beckman Laser Institute and Medical Clinic, University of California, Irvine 92717.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 107 (3): 1025–1035.
Citation
W Tao, R J Walter, M W Berns; Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable.. J Cell Biol 1 September 1988; 107 (3): 1025–1035. doi: https://doi.org/10.1083/jcb.107.3.1025
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement