A newly defined chick calvariae osteoblast culture system that undergoes a temporal sequence of differentiation of the osteoblast phenotype with subsequent mineralization (Gerstenfeld, L. C., S. Chipman, J. Glowacki, and J. B. Lian. 1987. Dev. Biol. 122:49-60) has been examined for the regulation of collagen synthesis, ultrastructural organization of collagen fibrils, and extracellular matrix mineralization. Collagen gene expression, protein synthesis, processing, and accumulation were studied in this system over a 30-d period. Steady state mRNA levels for pro alpha 1(I) and pro alpha 2 collagen and total collagen synthesis increased 1.2- and 1.8-fold, respectively, between days 3 and 12. Thereafter, total collagen synthesis decreased 10-fold while mRNA levels decreased 2.5-fold. In contrast to the decreasing protein synthesis after day 12, total accumulated collagen in the cell layers increased sixfold from day 12 to 30. Examination of the kinetics of procollagen processing demonstrated that there was a sixfold increase in the rate of procollagen conversion to alpha chains from days 3 to 30 and the newly synthesized collagen was more efficiently incorporated into the extracellular matrix at later culture times. The macrostructural assembly of collagen and its relationship to culture mineralization were also examined. High voltage electron microscopy demonstrated that culture cell layers were three to four cells thick. Each cell layer was associated with a layer of well developed collagen fibrils orthogonally arranged with respect to adjacent layers. Fibrils had distinct 64-70-nm periodicity typical of type I collagen. Electron opaque areas found principally associated with the deepest layers of the fibrils consisted of calcium and phosphorus determined by electron probe microanalysis and were identified by electron diffraction as a very poorly crystalline hydroxyapatite mineral phase. These data demonstrate for the first time that cultured osteoblasts are capable of assembling their collagen fibrils into a bone-specific macrostructure which mineralizes in a manner similar to that characterized in vivo. Further, this matrix maturation may influence the processing kinetics of the collagen molecule.
Skip Nav Destination
Article navigation
1 March 1988
Article|
March 01 1988
Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts.
L C Gerstenfeld,
L C Gerstenfeld
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Search for other works by this author on:
S D Chipman,
S D Chipman
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Search for other works by this author on:
C M Kelly,
C M Kelly
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Search for other works by this author on:
K J Hodgens,
K J Hodgens
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Search for other works by this author on:
D D Lee,
D D Lee
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Search for other works by this author on:
W J Landis
W J Landis
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Search for other works by this author on:
L C Gerstenfeld
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
S D Chipman
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
C M Kelly
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
K J Hodgens
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
D D Lee
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
W J Landis
Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 106 (3): 979–989.
Citation
L C Gerstenfeld, S D Chipman, C M Kelly, K J Hodgens, D D Lee, W J Landis; Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts.. J Cell Biol 1 March 1988; 106 (3): 979–989. doi: https://doi.org/10.1083/jcb.106.3.979
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement