We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant beta-actin (Leavitt, J., G. Bushar, T. Kakunaga, H. Hamada, T. Hirakawa, D. Goldman, and C. Merril. 1982. Cell. 28:259-268) is arrested under polymerizing conditions.
Skip Nav Destination
Article navigation
1 March 1988
Article|
March 01 1988
Probing actin polymerization by intermolecular cross-linking.
R Millonig,
R Millonig
M. E. Müller Institute for High Resolution Electron Microscopy, University of Basel, Switzerland.
Search for other works by this author on:
H Salvo,
H Salvo
M. E. Müller Institute for High Resolution Electron Microscopy, University of Basel, Switzerland.
Search for other works by this author on:
U Aebi
U Aebi
M. E. Müller Institute for High Resolution Electron Microscopy, University of Basel, Switzerland.
Search for other works by this author on:
R Millonig
M. E. Müller Institute for High Resolution Electron Microscopy, University of Basel, Switzerland.
H Salvo
M. E. Müller Institute for High Resolution Electron Microscopy, University of Basel, Switzerland.
U Aebi
M. E. Müller Institute for High Resolution Electron Microscopy, University of Basel, Switzerland.
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1988) 106 (3): 785–796.
Citation
R Millonig, H Salvo, U Aebi; Probing actin polymerization by intermolecular cross-linking.. J Cell Biol 1 March 1988; 106 (3): 785–796. doi: https://doi.org/10.1083/jcb.106.3.785
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement