We describe findings on the architecture of Drosophila melanogaster mitotic chromosomes, made using a three-dimensional-oriented structural approach. Using high-voltage and conventional transmission electron microscopy combined with axial tomography and digital contrast-enhancement techniques, we have for the first time visualized significant structural detail within minimally perturbed mitotic chromosomes. Chromosomes prepared by several different preparative procedures showed a consistent size hierarchy of discrete chromatin structural domains with cross-sectional diameters of 120, 240, 400-500, and 800-1,000 A. In fully condensed, metaphase-arrested chromosomes, there is evidence for even larger-scale structural organization in the range of 1,300-3,000-A size. The observed intrachromosomal arrangements of these higher-order structural domains show that both the radial loop and sequential helical coiling models of chromosome structure are over-simplifications of the true situation. Finally, our results suggest that the pathway of chromatin condensation through mitosis consists of concurrent changes occurring at several levels of chromatin organization, rather than a strictly sequential folding process.
Skip Nav Destination
Article navigation
1 July 1987
Article|
July 01 1987
A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization.
A S Belmont
J W Sedat
D A Agard
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1987) 105 (1): 77–92.
Citation
A S Belmont, J W Sedat, D A Agard; A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization.. J Cell Biol 1 July 1987; 105 (1): 77–92. doi: https://doi.org/10.1083/jcb.105.1.77
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement