Freeze-etch preparation of the laminated bundles of microtubules in motile axostyles demonstrates that the cross-bridges populating individual layers or laminae are structurally similar to the dynein arms of cilia and flagellae. Also, like dynein, they are extracted by high salt and undergo a change in tilt upon removal of endogenous ATP (while the axostyle as a whole straightens and becomes stiff). On the other hand, the bridges running between adjacent microtubule laminae in the axostyle turn out to be much more delicate and wispy in appearance, and display no similarity to dynein arms. Thus we propose that the internal or "intra-laminar" cross-bridges are the active force-generating ATPases in this system, and that they generate overall bends or changes in the helical pitch of the axostyle by altering the longitudinal and lateral register of microtubules in each lamina individually; e.g., by "warping" each lamina and creating longitudinal shear forces within it. The cross-links between adjacent laminae, on the other hand, would then simply be force-transmitting elements that serve to translate the shearing forces generated within individual laminae into overall helical shape changes. (This hypothesis differs from the views of earlier workers who considered a more active role for the later cross-links, postulating that they cause an active sliding between adjacent layers that somehow leads to axostyle movement.) Also described here are physical connections between adjacent intra-laminar cross-bridges, structurally analogous to the overlapping components of the outer dynein arms of cilia and flagella. As with dynein, these may represent a mechanism for propagating local changes from cross-bridge to cross-bridge down the axostyle, as occurs during the passage of bends down the length of the organelle.

This content is only available as a PDF.
You do not currently have access to this content.