The effect of calcium on myofibrillar turnover in primary chick leg skeletal muscle cultures was examined. Addition of the calcium ionophore A23187 at subcontraction threshold levels (0.38 microM) increased significantly rates of efflux of preloaded 45Ca+2 but had no effect on total protein accumulation. However, A23187 as well as ionomycin caused decreased accumulation of the myofibrillar proteins, myosin heavy chain (MHC), myosin light chain 1f (LC1f), 2f (LC2f), alpha-actin (Ac), and tropomyosin (TM). A23187 increased the degradation rate of LC1f, LC2f, and TM after 24 h. In contrast, the calcium ionophore caused decreased degradation of Ac and troponin-C and had no effect on the degradation of MHC, troponin-T, troponin-I, or alpha, beta-desmin (Dm). In addition, A23187 did not alter degradation of total myotube protein. The ionophore had little or no effect on the synthesis of total myotube proteins, but caused a marked decrease in the synthesis of MHC, LC1f, LC2f, Ac, TM, and Dm after 48 h. The mechanisms involved in calcium-stimulated degradation of the myofibrillar proteins were also investigated. Increased proteolysis appeared to involve a lysosomal pathway, since the effect of the Ca++ ionophore could be blocked by the protease inhibitor leupeptin and the lysosomotropic agents methylamine and chloroquine. The effects of A23187 occur in the presence of serum, a condition in which no lysosomal component of overall protein degradation is detected. The differential effect of A23187 on the degradative rates of the myofibrillar proteins suggests a dynamic structure for the contractile apparatus.
Skip Nav Destination
Article navigation
1 December 1985
Article|
December 01 1985
Regulation of myofibrillar accumulation in chick muscle cultures: evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins.
G Silver
J D Etlinger
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1985) 101 (6): 2383–2391.
Citation
G Silver, J D Etlinger; Regulation of myofibrillar accumulation in chick muscle cultures: evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins.. J Cell Biol 1 December 1985; 101 (6): 2383–2391. doi: https://doi.org/10.1083/jcb.101.6.2383
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement