Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation--trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The first four inhibitors of myotube formation do not perturb myoblast adhesion but rather block fusion of aggregated cells, which suggests that these agents perturb molecular events required for the union of the lipid bilayers. By contrast, tunicamycin exerts its effect by inhibiting the myoblast adhesion step, thereby blocking myotube formation. The effect of tunicamycin can be blocked by a protease inhibitor, however, which implies that the carbohydrate residues protect the glycoproteins from proteolytic degradation rather than participate directly in cell-cell adhesion. Whereas trypsin treatment of myoblasts in the absence of Ca++ destroys the cells' ability to exhibit Ca++-dependent adhesion, the presence of Ca++ during trypsin treatment inhibits the enzyme's effect, which suggests that myoblast adhesion is mediated by a glycoprotein(s) that has a conformation affected by Ca++. Finally, myoblast adhesion is inhibited by an antiserum raised against fusion-competent myoblasts. The effect of the antiserum is blocked by a fraction from the detergent extract of pectoral muscle that binds to immobilized wheat germ agglutinin, which again suggests that glycoproteins mediate Ca++-dependent myoblast adhesion.
Skip Nav Destination
Article navigation
1 September 1985
Article|
September 01 1985
The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins.
K A Knudsen
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1985) 101 (3): 891–897.
Citation
K A Knudsen; The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins.. J Cell Biol 1 September 1985; 101 (3): 891–897. doi: https://doi.org/10.1083/jcb.101.3.891
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement