Chemical modification of rat liver nuclei with citraconic anhydride selectively removed outer nuclear membrane. This conclusion was based on (a) transmission electron microscopy, (b) lipid analysis, (c) lamin B as an inner membrane-associated marker, and (d) the demonstration of phospholipid lateral mobility on outer membrane-depleted nuclei as a criteria for inner membrane integrity. Addition of urea or N-ethylmaleimide resulted in the additional disruption of inner membrane. Fluorescence photobleaching was used to determine the long range (greater than 4 microns) lateral transport of lectin receptors and a phospholipid analog in both membranes. The diffusion coefficient for wheat germ agglutinin on whole nuclei was 3.9 X 10(-10) cm2/s whereas the diffusion coefficient for wheat germ agglutinin in outer membrane-depleted nuclei was less than or equal to 10(-12) cm2/s. Phospholipid mobilities were the same in whole and outer membrane-depleted nuclei (3.8 X 10(-9) cm2/s). The protein diffusion differences observed between whole and outer membrane-depleted nuclei may be interpreted in the context of two functionally different membrane systems that compose the double bilayer of the nucleus.

This content is only available as a PDF.
You do not currently have access to this content.