In chronic granulomatous disease (CGD), Aspergillus is the most common cause of invasive fungal infections and accounts for a high percentage of mortality. We recruited 45 patients of CGD with invasive aspergillosis (IA) events. The median age between the first CGD manifestation and first aspergillosis event was 65 mo. Mortality rate was 57.7% for proven aspergillosis events, 23.1% for probable events, and 19.2% for possible events (p = 0.038). Aspergillus fumigatus was the most common species. Comparing mortality with this cutoff point, 36% of those receiving <75 days of antifungal treatment died compared with 16.7% of those receiving >75 days (p = 0.05). 26 (58%) of the 45 patients died, out of which 18 (69%) had IA. Overall survival of the 45 patients was 80.8% at 64 mo. The high mortality rate of IA in CGD patients could be reduced by early suspicion, initiating correct antifungal treatment over a long period, and considering the performance of hematopoietic stem cell transplantation.

Chronic granulomatous disease (CGD) is a congenital immune disorder of phagocytic function caused by a defect in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (1). Patients with CGD lack reactive oxygen species production, which predisposes them to severe bacterial and fungal infections along with various inflammatory manifestations. Genes associated with classical CGD include NADPH oxidase 2 (CYBB), cytochrome B-245 α chain (CYBA), neutrophil cytosolic factor 1 (NCF1), and NCF2. CYBB has an X-linked (XL) inheritance pattern, whereas the other genes are inherited in an autosomal recessive pattern (1). Inherited p40phox (NCF4) and chaperone EROS (CYBC1) deficiencies indicate an underlying distinctive condition resembling a mild, atypical form of CGD (2, 3).

Among the most common pathogens that infect patients with classical CGD include Staphylococcus aureus, Aspergillus spp., and Burkholderia spp. (4). Aspergillus infections have only been described in patients with pathogenic CYBC1 variants and not in those with NCF4 variants (2, 5, 6). Invasive Aspergillus infections are the most common fungal infections associated with CGD (4, 7, 8, 9, 10). Moreover, Aspergillus fumigatus is the most common pathogenic species, followed by Aspergillus nidulans (11). The clinical presentation of invasive aspergillosis (IA) in CGD is often indolent with minimal symptoms. Therefore, it is important to maintain a high index of clinical suspicion (8). The primary sites of IA in most patients are the lungs, followed by bones (8). These patients require prolonged and even multiple antifungal treatments (12). Stem cell transplantation (SCT) is a successful treatment for CDG and is an alternative for refractory IA (13). However, information on aspergillosis infections in patients with CGD is limited in Latin America (14, 15). Therefore, we aimed to describe the clinical, microbiological, and therapeutic characteristics of patients with CGD and IA in a Latin American country.

Demographic and genetic description

The current study included 45 patients with a genetic diagnosis of CGD recruited between 2005 and 2024 from seven public hospitals in four Mexican cities (Mexico City, Monterrey, Tlaxcala, and Puebla). Tirthy (40%) of the 75 patients in this cohort were not included because they did not have aspergillosis at the time of the study. All subjects in this study were born in Mexico and continued to live there. The subjects were recruited from 44 unrelated families hailing from 15 of the 32 states in Mexico. All patients had infections other than IA and inflammatory manifestations (granulomas in different organs, autoimmunity, macrophage activation syndrome, inflammatory bowel disease, or Kawasaki disease). Three patients exhibited additional risk factors, including exposure to mulch (P7), visits to caves (P7), and residence with his mother in a jail cell with unsanitary conditions (P31). Thirthy-nine patients (87%) included in this study were male. The median age at the first manifestation of CGD was 3 mo (1–6.5); only one patient (P31) presented with IA as the first manifestation of CGD. The median age at CGD genetic diagnosis was 25 mo (9–66.5). The median time between the first manifestation of CGD and the first episode of IA was 60 mo (26.5 days–126 mo). The median age of all patients at last follow-up was 133 mo (73–200.5), and the median age of patients alive at the time of the study was 154.5 mo (111–238.2). The genotypes identified were CYBB (XL) in 33 cases (73%) and recessive genes in 12 cases (27%), with the following distribution: NCF2 in six, CYBA in three, and NCF1 in three patients. Regarding prophylaxis, 44 patients (97%) received itraconazole and trimethoprim with sulfamethoxazole, whereas 39 patients (86%) received additionally recombinant interferon gamma. Adherence to these treatments remains unknown (Table 1). The data on 45 patients have been previously published (4, 16).

Table 1.

Molecular and clinical features of 45 patients with chronic granulomatous disease and invasive aspergillosis in Mexico

Patient code (P)SexGeneEventsIA Classification (EORTC/MSGERC)Aspergillus speciesTreatmentTime of TreatmentSteroidsParallel antituberculosis therapy to antifungal therapyOrgans involvedCo-infection to aspergillosisClinical courseCause of death
<175 days>75 days
P1(4) CYBB Possible ​ Voriconazole ​ ● ​ Lung Enterococcus faecalis, Achromobacter xylosoxidans, and Neisseria subflava Dead IA 
Probable ​ Voriconazole ​ ● ​ Lung 
P2(4) CYBB Probable ​ Voriconazole and caspofungin ​ ● ​ Lung Pseudomonas aeruginosa Alive ​ 
P3(4) CYBB Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ● R, H, Z, and E Lung, liver, spleen, and kidney Serratia marcescens Dead Cardiogenic shock 
Possible ​ Voriconazole ​ ​ ​ Lung and bone 
Possible ​ Voriconazole and caspofungin ​ ​ ​ Lung and bone 
Possible ​ Voriconazole and fluconazole ​ ● ​ Lung 
P4(4) NCF2 Possible ​ Voriconazole and caspofungin ​ ● ​ Lung ​ Dead Septic shock 
P5(4) CYBB Possible ​ Voriconazole ​ ● R, H, Z, and E Lung Exophiala dermatitidis Alive ​ 
Possible ​ Voriconazole ​ ● ​ Lung 
Probable ​ Voriconazole and amphotericin B ​ ● ​ Lung 
Probable ​ Voriconazole ​ ● ​ Lung 
P6(4) CYBB Possible ​ Voriconazole and caspofungin ​ ​ R, H, Z, E, and LVX Lung ​ Alive ​ 
Possible ​ Voriconazole ​ ​ ​ Lung 
P7(4)a NCF2 Possible ​ Voriconazole and posaconazole ​ ​ ​ Lung and spleen ​ Alive ​ 
Probable A. fumigatus Voriconazole ​ ​ H, E, CLR, and LVX Lung 
P8 CYBB Probable ​ Voriconazole and caspofungin ​ ● H, R, E, CIP, and CLR Lung ​ Dead IA 
P9(4) CYBA Probable Aspergillus spp Voriconazole ​ ​ ​ Lung Salmonella spp., P. aeruginosa, Citrobacter freundii, Klebsiella variicola, and Mycobacterium chimaera Dead IA 
Probable ​ Voriconazole ​ ● ​ Lung 
Probable A. niger
A. terreus 
Voriconazole, caspofungin, and amphotericin B ​ ● R, Z, E, and H Lung 
P10 CYBB Possible ​ Voriconazole, caspofungin, and posaconazole ​ ● LVX, H, Z, and E Lung ​ Dead Septic shock 
P11(4) NCF2 Probable ​ Voriconazole, caspofungin, and amphotericin B ​ ● H, R, and E Lung, skin, and CNS ​ Dead IA 
P12(4) CYBB Proven A. versicolor Voriconazole ​ ● ​ Lung, liver, spleen, and CNS S. marcescens and Burkholderia cepacia Alive ​ 
P13(4) CYBB Probable ​ Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung and spleen Pneumocystis jirovecii Dead IA 
Probable A. fumigatus Voriconazole ​ ​ ​ Lung 
P14(4) NCF2 Possible ​ Voriconazole ​ ● CLR, R, H, and E Lung E. coli BLEE, Klebsiella pneumoniae BLEE, P. aeruginosa, Pseudomonas rhodesiae, Streptococcus oralis, Streptococcus salivarius, Penicillium spp., and Campylobacter spp. Alive ​ 
Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung, liver, and spleen 
Proven A. ustus Voriconazole ​ ​ CLR, R, H, and E Lung 
Probable ​ Voriconazole ​ ● ​ Lung 
P15(4) CYBB Probable ​ Voriconazole ​ ● ​ Lung ​ Alive ​ 
P16 CYBB Possible ​ Voriconazole ​ ​ ​ Lung ​ Dead IA 
P17b CYBB Probable A. terreus Voriconazole and caspofungin ​ ● ​ Lung Actinomyces israelii and Staphylococcus aureus Dead IA 
A. flavus ​ 
P18(4) CYBB Possible ​ Voriconazole ​ ​ ​ Lung Salmonella spp. Dead IA 
Probable A. fumigatus Voriconazole, caspofungin, amphotericin B, and posaconazole ​ ● ​ Lung and CNS 
P19(4) CYBB Probable ​ Voriconazole and caspofungin ​ ● ​ Lung ​ Dead IA 
P20(4) CYBA Possible ​ Voriconazole ​ ​ ​ Lung S. marcescens, Burkholderia multivorans, P. aeruginosa, and K. pneumoniae BLEE Dead Pneumonia
K. pneumoniae 
Possible ​ Voriconazole ​ ​ ​ Lung and spleen 
Proven A. flavus Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung and CNS 
P21(4) NCF2 Possible ​ Voriconazole and caspofungin ​ ● ​ Lung Salmonella spp., Streptococcus pneumoniae, P. aureginosa, and Hormographiella aspergillata Alive ​ 
Probable ​ Voriconazole ​ ● ​ Lung 
P22(4) NCF1 Possible ​ Voriconazole ​ ● ​ Lung K. pneumoniae and Enterobacter cloacae Alive ​ 
Possible ​ Voriconazole ​ ​ H, E, LZD, and LVX Lung 
Probable ​ Voriconazole, caspofungin, and amphotericin B ​ ​ H, E Lung and CNS 
P23(4) CYBB Probable ​ Voriconazole and caspofungin ​ ● ​ Lung E. coli Dead Septic shock 
P24 CYBB Probable Aspergillus spp Voriconazole ​ ● ​ Lung Staphylococcushominis Alive ​ 
P25(4) CYBB Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung Staphylococcus haemolyticus and Stenotrophomonas maltophilia Dead IA 
P26(4) NCF1 Possible ​ Voriconazole ​ ​ ​ Lung Candida guilliermondii Alive ​ 
Proven A. fumigatus Voriconazole ​ ● ​ Lung 
Proven A. nidulans
A. fumigatus
A. versicolor 
Voriconazole and amphotericin B ​ ● ​ Lung 
P27(24) CYBB Probable Aspergillus spp Voriconazole, caspofungin, amphotericin B, and posaconazole ​ ● H, E, and LVX Lung, skin, and CNS ​ Dead IA 
P28 CYBB Probable ​ Voriconazole, caspofungin, and amphotericin ​ ● H, R, Z, and E Lung ​ Alive ​ 
P29(4) CYBB Possible ​ Voriconazole ​ ​ ​ Lung ​ Alive ​ 
Possible ​ Voriconazole ​ ​ ​ Lung 
Possible ​ Voriconazole ​ ● ​ Lung 
P30(4) CYBB Possible ​ Voriconazole and caspofungin ​ ● ​ Lung ​ Alive ​ 
P31(16)c CYBB Probable Aspergillus spp Voriconazole ​ ​ ​ Lung, bone, and skin E. faecalis Dead IA 
Probable A. fumigatus Voriconazole ​ ​ ​ Lung 
P32(4) CYBB Proven Aspergillus spp None ​ ​ ● ​ Lung B. cepacia Dead IA 
P33 CYBB Proven A. fumigatus Fluconazole ​ ● ​ Lung Mycobacterium tuberculosis and K. pneumoniae Dead IA 
P34(4) CYBB Probable ​ Voriconazole and amphotericin B ​ ● ​ Lung ​ Alive ​ 
P35(4) CYBB Proven A. versicolor Voriconazole ​ ● H, R, Z, and E Lung ​ Alive ​ 
P36(4) CYBB Possible ​ Voriconazole ​ ● ​ Lung and liver ​ Alive ​ 
Probable A. fumigatus Voriconazole ​ ● ​ Lung and skin 
P37(4) NCF2 Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ​ ​ Lung S. marcescens Alive ​ 
Probable ​ Voriconazole and caspofungin ​ ​ R, H, Z, and E Lung 
Proven A. versicolor Voriconazole ​ ● ​ Lung 
Proven A. fumigatus Voriconazole ​ ● ​ Lung and skin 
P38(4) CYBA Probable A. fumigatus Voriconazole ​ ​ ​ Lung ​ Dead Accident 
P39 CYBB Possible ​ Voriconazole ​ ​ ​ Lung Pseudomonas putida and K. pneumoniae BLEE Alive ​ 
Probable A. versicolor Voriconazole ​ ​ ​ Lung 
P40 CYBB Probable ​ Amphotericin B ​ ● ​ Lung S. aureus and S. maltophilia Dead Septic shock 
P41 CYBB Proven A. nidulans Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung B. cepacia, Penicillium spp., and Pseudomonas spp. Dead IA 
P42 CYBB Probable A. fumigatus
A. versicolor 
Voriconazole ​ ​ ​ Lung and bone A. lwoffi and P. aeruginosa Dead IA 
P43 CYBB Proven A. versicolor Voriconazole, caspofungin, amphotericin B, and posaconazole ​ ● ​ Lung and pericardium S. aureus and S. hominis Dead IA 
P44 CYBB Proven Aspergillus spp Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung and bone Streptococcus mitis, K. pneumoniae, P. aeruginosa, S. hominis, and Candida albicans Dead IA 
P45(4) NCF1 Possible ​ Voriconazole, itraconazole, and anidulafungin ​ ​ ​ Lung ​ Dead Cerebral cryptococcosis 
Probable A. fumigatus
A. flavus 
Itraconazole ​ ● ​ Lung 
Probable A. fumigatus Voriconazole, amphotericin B, itraconazole, fluconazole, and anidulafungin ​ ​ ​ Lung 
Probable A. flavus Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung 
Patient code (P)SexGeneEventsIA Classification (EORTC/MSGERC)Aspergillus speciesTreatmentTime of TreatmentSteroidsParallel antituberculosis therapy to antifungal therapyOrgans involvedCo-infection to aspergillosisClinical courseCause of death
<175 days>75 days
P1(4) CYBB Possible ​ Voriconazole ​ ● ​ Lung Enterococcus faecalis, Achromobacter xylosoxidans, and Neisseria subflava Dead IA 
Probable ​ Voriconazole ​ ● ​ Lung 
P2(4) CYBB Probable ​ Voriconazole and caspofungin ​ ● ​ Lung Pseudomonas aeruginosa Alive ​ 
P3(4) CYBB Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ● R, H, Z, and E Lung, liver, spleen, and kidney Serratia marcescens Dead Cardiogenic shock 
Possible ​ Voriconazole ​ ​ ​ Lung and bone 
Possible ​ Voriconazole and caspofungin ​ ​ ​ Lung and bone 
Possible ​ Voriconazole and fluconazole ​ ● ​ Lung 
P4(4) NCF2 Possible ​ Voriconazole and caspofungin ​ ● ​ Lung ​ Dead Septic shock 
P5(4) CYBB Possible ​ Voriconazole ​ ● R, H, Z, and E Lung Exophiala dermatitidis Alive ​ 
Possible ​ Voriconazole ​ ● ​ Lung 
Probable ​ Voriconazole and amphotericin B ​ ● ​ Lung 
Probable ​ Voriconazole ​ ● ​ Lung 
P6(4) CYBB Possible ​ Voriconazole and caspofungin ​ ​ R, H, Z, E, and LVX Lung ​ Alive ​ 
Possible ​ Voriconazole ​ ​ ​ Lung 
P7(4)a NCF2 Possible ​ Voriconazole and posaconazole ​ ​ ​ Lung and spleen ​ Alive ​ 
Probable A. fumigatus Voriconazole ​ ​ H, E, CLR, and LVX Lung 
P8 CYBB Probable ​ Voriconazole and caspofungin ​ ● H, R, E, CIP, and CLR Lung ​ Dead IA 
P9(4) CYBA Probable Aspergillus spp Voriconazole ​ ​ ​ Lung Salmonella spp., P. aeruginosa, Citrobacter freundii, Klebsiella variicola, and Mycobacterium chimaera Dead IA 
Probable ​ Voriconazole ​ ● ​ Lung 
Probable A. niger
A. terreus 
Voriconazole, caspofungin, and amphotericin B ​ ● R, Z, E, and H Lung 
P10 CYBB Possible ​ Voriconazole, caspofungin, and posaconazole ​ ● LVX, H, Z, and E Lung ​ Dead Septic shock 
P11(4) NCF2 Probable ​ Voriconazole, caspofungin, and amphotericin B ​ ● H, R, and E Lung, skin, and CNS ​ Dead IA 
P12(4) CYBB Proven A. versicolor Voriconazole ​ ● ​ Lung, liver, spleen, and CNS S. marcescens and Burkholderia cepacia Alive ​ 
P13(4) CYBB Probable ​ Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung and spleen Pneumocystis jirovecii Dead IA 
Probable A. fumigatus Voriconazole ​ ​ ​ Lung 
P14(4) NCF2 Possible ​ Voriconazole ​ ● CLR, R, H, and E Lung E. coli BLEE, Klebsiella pneumoniae BLEE, P. aeruginosa, Pseudomonas rhodesiae, Streptococcus oralis, Streptococcus salivarius, Penicillium spp., and Campylobacter spp. Alive ​ 
Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung, liver, and spleen 
Proven A. ustus Voriconazole ​ ​ CLR, R, H, and E Lung 
Probable ​ Voriconazole ​ ● ​ Lung 
P15(4) CYBB Probable ​ Voriconazole ​ ● ​ Lung ​ Alive ​ 
P16 CYBB Possible ​ Voriconazole ​ ​ ​ Lung ​ Dead IA 
P17b CYBB Probable A. terreus Voriconazole and caspofungin ​ ● ​ Lung Actinomyces israelii and Staphylococcus aureus Dead IA 
A. flavus ​ 
P18(4) CYBB Possible ​ Voriconazole ​ ​ ​ Lung Salmonella spp. Dead IA 
Probable A. fumigatus Voriconazole, caspofungin, amphotericin B, and posaconazole ​ ● ​ Lung and CNS 
P19(4) CYBB Probable ​ Voriconazole and caspofungin ​ ● ​ Lung ​ Dead IA 
P20(4) CYBA Possible ​ Voriconazole ​ ​ ​ Lung S. marcescens, Burkholderia multivorans, P. aeruginosa, and K. pneumoniae BLEE Dead Pneumonia
K. pneumoniae 
Possible ​ Voriconazole ​ ​ ​ Lung and spleen 
Proven A. flavus Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung and CNS 
P21(4) NCF2 Possible ​ Voriconazole and caspofungin ​ ● ​ Lung Salmonella spp., Streptococcus pneumoniae, P. aureginosa, and Hormographiella aspergillata Alive ​ 
Probable ​ Voriconazole ​ ● ​ Lung 
P22(4) NCF1 Possible ​ Voriconazole ​ ● ​ Lung K. pneumoniae and Enterobacter cloacae Alive ​ 
Possible ​ Voriconazole ​ ​ H, E, LZD, and LVX Lung 
Probable ​ Voriconazole, caspofungin, and amphotericin B ​ ​ H, E Lung and CNS 
P23(4) CYBB Probable ​ Voriconazole and caspofungin ​ ● ​ Lung E. coli Dead Septic shock 
P24 CYBB Probable Aspergillus spp Voriconazole ​ ● ​ Lung Staphylococcushominis Alive ​ 
P25(4) CYBB Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung Staphylococcus haemolyticus and Stenotrophomonas maltophilia Dead IA 
P26(4) NCF1 Possible ​ Voriconazole ​ ​ ​ Lung Candida guilliermondii Alive ​ 
Proven A. fumigatus Voriconazole ​ ● ​ Lung 
Proven A. nidulans
A. fumigatus
A. versicolor 
Voriconazole and amphotericin B ​ ● ​ Lung 
P27(24) CYBB Probable Aspergillus spp Voriconazole, caspofungin, amphotericin B, and posaconazole ​ ● H, E, and LVX Lung, skin, and CNS ​ Dead IA 
P28 CYBB Probable ​ Voriconazole, caspofungin, and amphotericin ​ ● H, R, Z, and E Lung ​ Alive ​ 
P29(4) CYBB Possible ​ Voriconazole ​ ​ ​ Lung ​ Alive ​ 
Possible ​ Voriconazole ​ ​ ​ Lung 
Possible ​ Voriconazole ​ ● ​ Lung 
P30(4) CYBB Possible ​ Voriconazole and caspofungin ​ ● ​ Lung ​ Alive ​ 
P31(16)c CYBB Probable Aspergillus spp Voriconazole ​ ​ ​ Lung, bone, and skin E. faecalis Dead IA 
Probable A. fumigatus Voriconazole ​ ​ ​ Lung 
P32(4) CYBB Proven Aspergillus spp None ​ ​ ● ​ Lung B. cepacia Dead IA 
P33 CYBB Proven A. fumigatus Fluconazole ​ ● ​ Lung Mycobacterium tuberculosis and K. pneumoniae Dead IA 
P34(4) CYBB Probable ​ Voriconazole and amphotericin B ​ ● ​ Lung ​ Alive ​ 
P35(4) CYBB Proven A. versicolor Voriconazole ​ ● H, R, Z, and E Lung ​ Alive ​ 
P36(4) CYBB Possible ​ Voriconazole ​ ● ​ Lung and liver ​ Alive ​ 
Probable A. fumigatus Voriconazole ​ ● ​ Lung and skin 
P37(4) NCF2 Possible ​ Voriconazole, caspofungin, and amphotericin B ​ ​ ​ Lung S. marcescens Alive ​ 
Probable ​ Voriconazole and caspofungin ​ ​ R, H, Z, and E Lung 
Proven A. versicolor Voriconazole ​ ● ​ Lung 
Proven A. fumigatus Voriconazole ​ ● ​ Lung and skin 
P38(4) CYBA Probable A. fumigatus Voriconazole ​ ​ ​ Lung ​ Dead Accident 
P39 CYBB Possible ​ Voriconazole ​ ​ ​ Lung Pseudomonas putida and K. pneumoniae BLEE Alive ​ 
Probable A. versicolor Voriconazole ​ ​ ​ Lung 
P40 CYBB Probable ​ Amphotericin B ​ ● ​ Lung S. aureus and S. maltophilia Dead Septic shock 
P41 CYBB Proven A. nidulans Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung B. cepacia, Penicillium spp., and Pseudomonas spp. Dead IA 
P42 CYBB Probable A. fumigatus
A. versicolor 
Voriconazole ​ ​ ​ Lung and bone A. lwoffi and P. aeruginosa Dead IA 
P43 CYBB Proven A. versicolor Voriconazole, caspofungin, amphotericin B, and posaconazole ​ ● ​ Lung and pericardium S. aureus and S. hominis Dead IA 
P44 CYBB Proven Aspergillus spp Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung and bone Streptococcus mitis, K. pneumoniae, P. aeruginosa, S. hominis, and Candida albicans Dead IA 
P45(4) NCF1 Possible ​ Voriconazole, itraconazole, and anidulafungin ​ ​ ​ Lung ​ Dead Cerebral cryptococcosis 
Probable A. fumigatus
A. flavus 
Itraconazole ​ ● ​ Lung 
Probable A. fumigatus Voriconazole, amphotericin B, itraconazole, fluconazole, and anidulafungin ​ ​ ​ Lung 
Probable A. flavus Voriconazole, caspofungin, and amphotericin B ​ ● ​ Lung 

M, Male; F, Female; H, isoniazid; R, rifampicin; E, ethambutol; Z, pyrazinamide; CLR, clarithromycin; LVX, levofloxacin; CIP, ciprofloxacin; LZD, linezolid. Superscript numbers in column one indicate bibliographic citations if patient previously published. * time of antifungal treatment; ● the patient received steroids.

a

The patient was exposed to mulch.

b

The patient visited a cave.

c

The patient lived in jail after birth.

Invasive aspergillosis

Of the 44 families of the 45 patients, one family had two affected members with IA. The median age at the first IA event in all 45 patients was 65 mo (30.5–140). A total of 79 IA events were recorded in 45 patients. The difference in the median age at the first IA event between the 33 patients with XL inheritance (64 mo [30.5–140]) and the 12 patients with AR inheritance (85.5 mo [25.2–166.7]) was not significant (p = 0.586). Thirteen patients (29%) had at least one IA event before CGD diagnosis, median period time between the first IA event and the CGD diagnosis was 1 mo (1, 2, 3), and 32 patients (71%) had one or more IA events after CGD diagnosis, median period time between the CGD diagnosis and the first IA event was 46.5 mo (13.2–85.5). Of the 45 patients, 26 (58%) had one IA event, nine (20%) had two, five (11%) had three, and five (11%) had four IA events. The median time between the first and second events was 35 mo (15–65), that between the second and third events was 26 mo (17.5–32.5), and that between the third and fourth events was 22 mo (15.5–43.5) (Fig. 1).

Figure 1.

Median time at the first invasive aspergillosis (IA) event and subsequent events. Different boxes present the number (n) of patients with one, two, three, or four events. The median time is expressed in months with the range in parentheses.

Figure 1.

Median time at the first invasive aspergillosis (IA) event and subsequent events. Different boxes present the number (n) of patients with one, two, three, or four events. The median time is expressed in months with the range in parentheses.

Close modal

Microbiological features

Based on the European Organization for Research and Treatment of Cancer/the Mycoses Study Group Education and Research Consortium (EORTC/MSGERC) criteria (17), from the 79 events, 13 (17%) IA events were proven, 35 (44%) were probable, and 31 (39%) were possible (Table 1). The mortality rate was 57.7% for proven events, 23.1% for probable events, and 19.2% for possible events (p= 0.038). The median time between the onset of symptoms and the isolation of Aspergillus spp. was 35 days (19.5–55.5). Aspergillus spp. was detected in 30 events, 13 of which were Aspergillus fumigatus and the other 17 included Aspergillus versicolor (n = 7), Aspergillus terreus (n = 2), Aspergillus nidulans (n = 2), Aspergillus flavus (n = 4), Aspergillus ustus (n = 1), and Aspergillus niger (n = 1) (Tables 2 and 3). The proportion of mortality was not significantly different between patients infected with one Aspergillus species (48%) and those infected with ≥2 Aspergillus species (60%) (p = 0.5). The median time from symptom onset to Aspergillus antigen (galactomannan) positivity was 21 days (9.7–59.7) among the 35 probable events. The 79 IA events affected the following organs: lungs (n = 59); lungs and bones (n = 3); lungs and spleen (n = 3); lungs and central nervous system (CNS; n = 3); lungs, skin, and CNS (n = 2); bones (n = 1); skin (n = 1); lungs, and skin (n = 1); lungs and liver (n = 1); lungs and pericardium (n = 1); lungs, livers, and spleen (n = 1); lungs, bones, and skin (n = 1); lungs, liver, spleen, and kidneys (n = 1); and lungs, liver, spleen, and CNS (n = 1) (Fig. 2). The proportion of mortality was not significantly different between patients with only pulmonary IA (32.2%) and IA pulmonary and one or more IA organs affected (35%) (p = 0.818). Co-infection with bacteria and fungi was not uncommon; the Table 1 shows the different microorganisms that co-infected each patient in each of the IA events (Table 1).

Table 2.

Detected Aspergillus species in different sterile organs and body fluids in 13 different proven events in 11 patients

Event numberCode patient (P)Species identified by cultureDetection site
P12 A. versicolor Brain 
P14 A. ustus Lung 
P20 A. flavus Brain and lung 
P26 A. fumigatus Lung 
P26 A. nidulans Lung and pleural fluid 
A. fumigatus 
A. versicolor 
P32 Aspergillus spp. Lung 
P33 A. fumigatus Lung (autopsy) 
P35 A. versicolor Lung 
P37 A. versicolor Lung 
10 A. fumigatus Lung and skin 
11 P41 A. nidulans Lung 
12 P43 A. versicolor Pericardial fluid 
13 P44 Aspergillus spp. Lung and bone 
Event numberCode patient (P)Species identified by cultureDetection site
P12 A. versicolor Brain 
P14 A. ustus Lung 
P20 A. flavus Brain and lung 
P26 A. fumigatus Lung 
P26 A. nidulans Lung and pleural fluid 
A. fumigatus 
A. versicolor 
P32 Aspergillus spp. Lung 
P33 A. fumigatus Lung (autopsy) 
P35 A. versicolor Lung 
P37 A. versicolor Lung 
10 A. fumigatus Lung and skin 
11 P41 A. nidulans Lung 
12 P43 A. versicolor Pericardial fluid 
13 P44 Aspergillus spp. Lung and bone 

In P26 there were three species, and in P37 there were two species.

Table 3.

Detected Aspergillus species in non steril body fluids in 17 different events from 13 patients

Event numberCode patient (P)Species identified by cultureDetection site
P7 A. fumigatus BAL 
P9 Aspergillus spp. BAL 
A. niger and A. terreus BAL 
P13 A. fumigatus BAL 
P17 A. terreus and A. flavus BAL 
P18 A. fumigatus BAL 
P24 Aspergillus spp. BAL 
P27 Aspergillus spp. BAL, purulent discharge from an abscess 
P31 Aspergillus spp. Purulent discharge from an abscess 
10 A. fumigatus BAL 
11 P36 A. fumigatus BAL, purulent discharge from an abscess 
12 P38 A. fumigatus BAL 
13 P39 A. versicolor Blood 
14 P42 A. fumigatus and A. versicolor BAL, purulent discharge from an abscess 
15 P45 A. fumigatus and A. flavus BAL 
16 A. fumigatus BAL 
17 A. flavus BAL 
Event numberCode patient (P)Species identified by cultureDetection site
P7 A. fumigatus BAL 
P9 Aspergillus spp. BAL 
A. niger and A. terreus BAL 
P13 A. fumigatus BAL 
P17 A. terreus and A. flavus BAL 
P18 A. fumigatus BAL 
P24 Aspergillus spp. BAL 
P27 Aspergillus spp. BAL, purulent discharge from an abscess 
P31 Aspergillus spp. Purulent discharge from an abscess 
10 A. fumigatus BAL 
11 P36 A. fumigatus BAL, purulent discharge from an abscess 
12 P38 A. fumigatus BAL 
13 P39 A. versicolor Blood 
14 P42 A. fumigatus and A. versicolor BAL, purulent discharge from an abscess 
15 P45 A. fumigatus and A. flavus BAL 
16 A. fumigatus BAL 
17 A. flavus BAL 

P9 and P45 had two species. BAL, bronchoalveolar fluid.

Figure 2.

Organ(s) involved in 79 events of invasive aspergillosis in 45 patients with chronic granulomatous disease . X axis presents the involved organs, and Y axis presents the number or events.

Figure 2.

Organ(s) involved in 79 events of invasive aspergillosis in 45 patients with chronic granulomatous disease . X axis presents the involved organs, and Y axis presents the number or events.

Close modal

Antifungal therapy

Fourty-four (97%) patients with 78 events received antifungal therapy. The median time between hospital admission and initiation of antifungal treatment was 13.5 days (730). One patient (P32) did not receive treatment because IA was diagnosed postmortem. All 44 patients received one or more of the following antifungal agents: voriconazole, amphotericin B, caspofungin, posaconazole, itraconazole, or anidulafungin. Of the 78 IA events, 43 (55%) were treated with monotherapy, 16 (20.5%) with dual therapy, 15 (19.2%) with triple therapy, three (3.8%) with quadruple therapy, and one (1.5%) with quintuple therapy (Table 1). Patients who received more than two antifungal agents per event had a higher rate of mortality (48.6%) compared with patients who received only one antifungal agent (20.5%) (p = 0.008). We compared the number of days of antifungal treatment in the group of patients who died and those who survived; we found no statistically significant differences. Receiver-operating characteristic curve (ROC) curve analysis was performed to relate the number of treatment days to mortality, resulting in a cutoff point of <75 treatment days. Comparing mortality with this cutoff point, 36% of those receiving <75 days of treatment died versus 16.7% of those receiving >75 days (p = 0.05). Among patients coinfected with tuberculosis and aspergillosis there was no statistically significant difference (p = 0.516) in the proportion of deaths in patients receiving voriconazole plus antimycobacterial drugs, including rifampicin (27.3%) versus voriconazole plus other antimycobacterial drugs without rifampicin (40%). In 51 (65%) of the 78 events, parallel therapy with corticosteroids (methylprednisolone, prednisone, dexamethasone, or hydrocortisone) was administered; however, information on the exact indication is unavailable.

Outcome

Among the described patients, 12 (27%) underwent at least one SCT, and the median age at the time of transplantation was 57.5 mo (19.2–158.2). In the cohort under investigation, nine patient received reduced intensity and three myeloablative conditioning. Among the 12 transplanted patients, those receiving complete myeloablative conditioning reported no deaths and those receiving reduced intensity six deaths (66.7%) (p = 0.091). Four out of 12 patients experienced an IA event prior to undergoing SCT. Of these patients, three underwent successful grafting, while one patient died owing to septic shock (microorganism undetected) (Fig. 3). The remaining eight patients were not evaluated purposely for aspergillosis before the procedure. Five out of the eight cases died; one as a result of septic shock (microorganism undetected) and four as a result of IA during the procedure, while the remaining three had a successful graft. In the four patients with IA after SCT, the median time between the procedure and the diagnosis of IA was 21 days (7–145).

Figure 3.

Stem cell trasplantation (SCT) in 12 patients with chronic granulomatous disease. Twelve of the 45 patients were subjected to transplantation, four of which had invasive aspergillosis (IA) before SCT and eight after. P, patients; AR, autosomal recessive. ◎Full myeloablative conditioning. ■ Reduced intensity conditioning.

Figure 3.

Stem cell trasplantation (SCT) in 12 patients with chronic granulomatous disease. Twelve of the 45 patients were subjected to transplantation, four of which had invasive aspergillosis (IA) before SCT and eight after. P, patients; AR, autosomal recessive. ◎Full myeloablative conditioning. ■ Reduced intensity conditioning.

Close modal

Twenty-six of the 45 patients died, 18 (69%) from IA and the remaining from other causes (Table 4). Sixteen (89%) of the deceased patients had XL inheritance, while the rest had AR inheritance (p = 0.054). The overall survival of the 45 patients was 80.8% at 64 mo and 67.9% at 120 mo, with a median survival of 195 mo. The median survival time for patients with XL-CGD was 167 mo, with 20 deaths, and for patients with AR-CGD it was more than 313 mo, with 6 deaths (p = 0.07). When survival analysis of the AR-CGD subgroups was performed, no significant differences were observed (p = 0.254), median survival for the p22phox group was 201 mo with three deaths, for the p47phox group 358 mo with one death, and finally, for the p67phox group 184 mo with two deaths (Fig. 4). The median age at death was 107.5 mo (44.7–196), and the median time between the first IA event and death was 6 mo (115). Aspergillus spp. was isolated from 10 (55%) of the 18 patients who died of IA; the species are listed in Table 1.

Table 4.

The clinical and microbiological profile of 18 patients with chronic granulomatous disease who died secondary to invasive aspergillosis

Patient code (P)Affected organsAspergillus detectionTreatmentCo-infectionsAge of death
P1 Lung Galactomannan antigen Voriconazole Achromobacter xylosoxidans and N. subflava 16 yo 9 mo 
P8 Lung Galactomannan antigen Voriconazole and caspofungin ​ 1 yo 10 mo 
P9 Lung A. niger Voriconazole, caspofungin, and amphotericin B Salmonella spp, P. aeruginosa, C. freundii, K. variicola, and M. chimaera 16 yo 9 mo 
A. terreus 
P11 Lung, skin, and CNS Galactomannan antigen Voriconazole, caspofungin, and amphotericin B None 15 yo 4 mo 
P13 Lung A. fumigatus Voriconazole P. jirovecii 4 yo 
P16 Lung Clinical and radiological findings Voriconazole None 11 yo 11 mo 
P17 Lung A. terreus Voriconazole and caspofungin A. israelii and S. aureus 5 yo 5 mo 
A. flavus 
P18 Lung and CNS A. fumigatus Voriconazole, caspofungin, amphotericin B, and posaconazole Salmonella spp. 7 yo 11 mo 
P19 Lung Galactomannan antigen Voriconazole and caspofungin None 1 yo 1 mo 
10 P25 Lung Clinical and radiological findings Voriconazole, caspofungin, and amphotericin B S. haemolyticus and S. maltophilia 6 yo 8 mo 
11 P27 Lung, skin, and CNS Aspergillus spp. Voriconazole, caspofungin, amphotericin B, and posaconazole None 4 yo 
12 P31 Lung A. fumigatus Voriconazole None 12 mo 
13 P32 Lung Aspergillus spp. None B. cepacia 10 mo 
14 P33 Lung A. fumigatus Fluconazole M. tuberculosis and K. pneumoniae 2 yo 11 mo 
15 P41 Lung A. nidulans Voriconazole, caspofungin, and amphotericin B B. cepacia, Penicilium spp., and Pseudomonas spp. 12 yo 11 mo 
16 P42 Lung and bone A. fumigatus and A. versicolor Voriconazole A. lwoffi and P. aeruginosa 16 yo 16 mo 
17 P43 Lung and pericardium A. versicolor Voriconazole, caspofungin, amphotericin B, and posaconazole S. aureus and S. hominis 10 yo 1 mo 
18 P44 Lung and bone Aspergillus spp. Voriconazole, caspofungin, and amphotericin B S. mitis, K. pneumoniae, P. aeruginosa, S. hominis, and C. albicans 6 yo 9 mo 
Patient code (P)Affected organsAspergillus detectionTreatmentCo-infectionsAge of death
P1 Lung Galactomannan antigen Voriconazole Achromobacter xylosoxidans and N. subflava 16 yo 9 mo 
P8 Lung Galactomannan antigen Voriconazole and caspofungin ​ 1 yo 10 mo 
P9 Lung A. niger Voriconazole, caspofungin, and amphotericin B Salmonella spp, P. aeruginosa, C. freundii, K. variicola, and M. chimaera 16 yo 9 mo 
A. terreus 
P11 Lung, skin, and CNS Galactomannan antigen Voriconazole, caspofungin, and amphotericin B None 15 yo 4 mo 
P13 Lung A. fumigatus Voriconazole P. jirovecii 4 yo 
P16 Lung Clinical and radiological findings Voriconazole None 11 yo 11 mo 
P17 Lung A. terreus Voriconazole and caspofungin A. israelii and S. aureus 5 yo 5 mo 
A. flavus 
P18 Lung and CNS A. fumigatus Voriconazole, caspofungin, amphotericin B, and posaconazole Salmonella spp. 7 yo 11 mo 
P19 Lung Galactomannan antigen Voriconazole and caspofungin None 1 yo 1 mo 
10 P25 Lung Clinical and radiological findings Voriconazole, caspofungin, and amphotericin B S. haemolyticus and S. maltophilia 6 yo 8 mo 
11 P27 Lung, skin, and CNS Aspergillus spp. Voriconazole, caspofungin, amphotericin B, and posaconazole None 4 yo 
12 P31 Lung A. fumigatus Voriconazole None 12 mo 
13 P32 Lung Aspergillus spp. None B. cepacia 10 mo 
14 P33 Lung A. fumigatus Fluconazole M. tuberculosis and K. pneumoniae 2 yo 11 mo 
15 P41 Lung A. nidulans Voriconazole, caspofungin, and amphotericin B B. cepacia, Penicilium spp., and Pseudomonas spp. 12 yo 11 mo 
16 P42 Lung and bone A. fumigatus and A. versicolor Voriconazole A. lwoffi and P. aeruginosa 16 yo 16 mo 
17 P43 Lung and pericardium A. versicolor Voriconazole, caspofungin, amphotericin B, and posaconazole S. aureus and S. hominis 10 yo 1 mo 
18 P44 Lung and bone Aspergillus spp. Voriconazole, caspofungin, and amphotericin B S. mitis, K. pneumoniae, P. aeruginosa, S. hominis, and C. albicans 6 yo 9 mo 

yo, years old.

Figure 4.

Survival in 45 patients with crhonic granulomatous disease and invasive aspergillosis. (A) Overall survival of the 45 patients was 67.9% at 120 mo. (B) Median survival time for patients with XL-CGD was 167 mo and it was more than 313 mo for patients with AR-CGD (p = 0.07). (C) When survival analysis of the AR-CGD subgroups was performed, no significant differences were observed (p = 0.254).

Figure 4.

Survival in 45 patients with crhonic granulomatous disease and invasive aspergillosis. (A) Overall survival of the 45 patients was 67.9% at 120 mo. (B) Median survival time for patients with XL-CGD was 167 mo and it was more than 313 mo for patients with AR-CGD (p = 0.07). (C) When survival analysis of the AR-CGD subgroups was performed, no significant differences were observed (p = 0.254).

Close modal

This is the first study on patients with CGD and IA in a Latin American country. The 45 patients included in this study were treated in public hospitals, with the majority coming from low socioeconomic backgrounds. All patients in the present study had pathogenic variants of the four genes involved in classical CGD (CYBB, CYBA, NCF1, and NCF2) (18). In a cohort of 24 North American patients with CGD receiving prophylactic itraconazole, the first event of invasive fungal infection occurred at the age of 10 years compared with 4 years in patients that did not receive itraconazole (12). Most of the patients described here experienced their first IA event before the age of 5 years, and although they were prescribed prophylactic itraconazole, we have no knowledge of their treatment adherence and compliance. Routine monitoring of itraconazole plasma levels (target level of >250 μg/ml for prophylaxis) is mandatory as a method to assess adherence and compliance; levels must be monitored every 3 mo in patients with CGD that are not transplanted (19).

Each event was classified according to the EORTC/MSGERC criteria, with 13 events classified as proven, 35 as probable, and 31 as possible. The proven events had a higher mortality; a possible explanation is that the other two groups had a lower infectious burden or were actually free of aspergillosis. Similar to other studies, we found that in few patients with proven IA events, the previous results for serum galactomannan antigen were negative (12, 13). Blumental et al. reported that the lack of sensitivity can be attributed to the absence of angioinvasion by fungal hyphae observed during IA in patients with CGD, in contrast to neutropenic subjects (12). In addition, fungal elements have been identified in lung biopsies with no growth in culture (20). Therefore, a negative test result in patients with CGD does not rule out the possibility of aspergillosis. Similar to in other patient groups, A. fumigatus was the most common species to infect the 45 Mexican patients (7, 21, 22, 23, 24, 25, 26). Other species identified in our study included A. nidulans, A. terreus, A. versicolor, A. flavus, A. ustus, and A. niger. Interestingly, there was no increased mortality in patients infected with two species compared with those infected with one species. To the best of our knowledge, A. ustus (P14) has not been previously described in patients with CGD. A. ustus has been found on the surfaces of the walls of caves, in the indoor air of buildings, including hospitals, and in soils and bat dung (27). A comparison of our results with other descriptions of CGD and IA confirmed that Aspergillus primarily affected the lungs, followed by other anatomical sites, such as the bones, CNS, skin, and spleen (7, 10, 21, 25, 28). In this study, we found no increased mortality in patients with pulmonary IA versus those with pulmonary and other organ involvement. Pericardial involvement of Aspergillus was found in one patient (P43). A similar case was reported by Abd Elaziz et al. (25). Furthermore, one patient (P3) had IA involving the kidneys, which is the first reported case in literature involving this organ. We found that after the first IA event, subsequent aspergillosis events occurred, and the time interval between the following IA events decreased (Fig. 1).

According to Kline et al., single-agent therapy for IA often provides unsatisfactory results; however, the benefits of combined therapy are debated (13). In the 78 patients, voriconazole monotherapy was the first-line treatment for most patients. However, several patients experienced subsequent IA events. In this study, patients who received more than two antifungals per event had a higher mortality rate than those who received a single antifungal; one explanation could be that by the time an additional antifungal was administered, the aspergillosis had spread and was refractory despite polytherapy. Combination antifungal therapy starting from the first episode of aspergillosis may be effective in preventing subsequent episodes. Among the 45 patients who received <75 days of treatment versus those who received >75 days had higher mortality. The neonatal patient (P31) was administered voriconazole monotherapy for 28 days with apparent improvement; however, a few months later, he presented with a second fatal event. Prolonged administration of multiple antifungals is necessary to achieve remission of infection (12). Blumental et al. suggested ∼446 days of treatment for cure (12).

Patients with inborn errors of immunity are at risk of exposure to endemic microorganisms depending on their geographical region of residence. Mycobacterial infections are widespread among patients with CGD in Latin America (13). These patients are often co-infected with fungi and mycobacteria in tuberculosis endemic areas, which require treatment using antifungals in addition to antituberculosis drugs (Table 1) (29). In such cases, it is crucial to note that combining rifampicin with voriconazole treatment leads to a significant reduction in the plasma concentration of the antifungal drug (30), thereby compromising treatment efficacy. Alternative medications should be considered in such cases. Aspergillus infection triggers an abnormal immune response in patients with CGD. This response is characterized by hyperinflammation leading to tissue damage and ineffective fungal control (31). Deffert et al. showed that when a preparation containing the A. fumigatus cell wall is introduced, a severe and persistent inflammatory response is induced in a murine knockout model that lacks NADPH oxidase (32). Studies in humans and mice have conclusively demonstrated that infection with A. nidulans and A. fumigatus induces a hyper-inflammatory response driven by the excessive production of interleukin-1 (31). The treatment for inflammatory complications in patients with CGD and IA includes corticosteroids and other immunosuppressants (31, 33). The 35% of the patients described in our study received steroids; some were part of an anti-inflammatory treatment in conjunction with antimicrobials.

The access to transplants is only available to a minority of patients in Latin America (15). Apart from cost, other limiting factors include lack of expertise in performing transplants on patients with CGD. Among the patients in the present study, 12 underwent SCT, and 50% died during the procedure, five secondary to IA. Countries such as Mexico should take into account the experience gained from other groups: transplantation in CGD should be strongly considered at a younger age and especially if a well-matched donor is available (34, 35). In high-risk patients with CGD, reduced intensity conditioning SCT regimen is safe and effective (36, 37). All patients with CGD should be screened for aspergillosis prior to SCT. Since serum ß-d-glucan and serum galactomannan provide unreliable results, a negative result does not mean that Aspergillus spp. infection does not exist; radiological imaging is a relatively more effective indicator of the disease extent (8, 13, 37, 38, 39). Additionally, it is crucial to consider antifungal therapy before and after transplantation regardless of whether the patient is infected by Aspergillus (38, 40). Multidrug antifungal therapy is essential for successful transplant outcomes in patients with CGD and fungal infections (13). IA was responsible for an overwhelming majority (69%) of all deaths in this study group of 45 patients. This rate is higher than those reported in other international cohorts (7, 9, 10, 22, 26, 28, 41).

Finally, the early treatment of IA is crucial, which includes empirical combined and aggressive treatments, introduction of new antifungal drugs, measurement of therapeutic levels, and implementation of SCT. These measures will reduce morbidity and mortality in countries with a situation similar to Mexico.

Patients with CGD (genetic diagnosis) and IA in Mexico (from seven different hospitals) between January 2005 and September 2024 were included. The study protocol was approved by the Research Committee of the National Institute of Pediatrics (019/2011). Since this was a retrospective study of chart information, informed consent was not required. Attending physicians were contacted and invited to participate by completing a questionnaire on demographic, clinical, microbiological, and therapeutic information related to the IA event(s) of each patient with CGD. Each physician reviewed the medical records of the patients and recorded the requested information. Questionnaires were received electronically. Data were entered into an Excel spreadsheet.

Statistics

Descriptive statistics were used for the statistical analysis. Data are expressed according to distribution, categorical variables with proportions, and numerical variables as medians (interquartile ranges are in parentheses). Differences between groups were compared using Fisher’s exact test and Mann–Whitney U test. Survival was analyzed by the Kaplan–Meier method, with log-rank test performed for comparisons values of p < 0.05 were considered significant. All statistical analyses were performed using Statistical Package for Social Science (SPSS) software version 25.0 (SPSS, Inc.).

Definitions

Each IA event was classified as possible, probable, or proven according to the criteria established by the EORTC/MSGERC (17). Patients were considered to have a proven IA event if they satisfied at least one of the following mycological criteria: (1) histopathological, cytopathological, or direct microscopic examination of a specimen obtained by needle aspiration or biopsy in which hyphae specific to Aspergillus spp. were observed accompanied by evidence of associated tissue damage (with necessary confirmation by means of culture or polymerase chain reaction). (2) Recovery of Aspergillus spp. by culture of a specimen obtained using a sterile procedure from a normally sterile site and a clinically or radiologically abnormal site consistent with an infectious disease process, while excluding bronchoalveolar lavage fluid, cranial sinus cavity specimen, and urine. Probable IA requires the presence of a host factor, a clinical criterion, and a mycological criterion. Cases that met the criteria for host factors and clinical criteria, but not for mycological criteria, were considered as possible IA (17).

The first IA event was defined as the first Aspergillus infection. Subsequent events were defined based on the presence of new clinical/radiological data with or without new mycological evidence (direct or indirect) after the completion of antifungal treatment and evidence of clinical/radiological improvement for the first episode (11, 17, 42).

Data available upon request.

We would like to thank FUMENI A.C. for the support provided for the professional writing services in this project.

Author contributions: T. Cova-Guzmán: data curation, investigation, methodology, software, and writing—original draft. D. Palacios Reyes: data curation, investigation, and writing—original draft. C.M. Román-Montes: data curation and writing—original draft. M.A. Yamazaki-Nakashimada: data curation, resources, and visualization. A.T. Staines Boone: conceptualization, investigation, methodology, supervision, validation. L. Silva-Goytia: resources. M.L. García-Cruz: investigation. H. Gómez-Tello: investigation. U. Pérez-Blanco: methodology. N. Jiménez-Polvo: investigation. E. Mamani Velasquez: investigation. N. Ramírez Uribe: resources and visualization. I. Medina Vera: methodology. S. Espinosa Padilla: resources, supervision, validation, visualization, and writing—original draft, review, and editing. L. Blancas-Galicia: conceptualization, methodology, supervision, and writing—review and editing.

1.
Yu
,
H.-H.
,
Y.-H.
Yang
, and
B.-L.
Chiang
.
2021
.
Chronic granulomatous disease: A comprehensive review
.
Clin. Rev. Allergy Immunol.
61
:
101
113
.
2.
van de Geer
,
A.
,
A.
Nieto-Patlán
,
D.B.
Kuhns
,
A.T.
Tool
,
A.A.
Arias
,
M.
Bouaziz
,
M.
de Boer
,
J.L.
Franco
,
R.P.
Gazendam
,
J.L.
van Hamme
, et al
.
2018
.
Inherited p40phox deficiency differs from classic chronic granulomatous disease
.
J. Clin. Invest.
128
:
3957
3975
.
3.
Neehus
,
A.-L.
,
M.
Fusaro
,
NCF4 Consortium
,
R.
Lévy
, and
J.
Bustamante
.
2023
.
A new patient with p40(phox) deficiency and chronic immune thrombocytopenia
.
J. Clin. Immunol.
43
:
1173
1177
.
4.
Blancas-Galicia
,
L.
,
E.
Santos-Chávez
,
C.
Deswarte
,
Q.
Mignac
,
I.
Medina-Vera
,
X.
León-Lara
,
M.
Roynard
,
S.C.
Scheffler-Mendoza
,
R.
Rioja-Valencia
,
A.
Alvirde-Ayala
, et al
.
2020
.
Genetic, immunological, and clinical features of the first Mexican cohort of patients with chronic granulomatous disease
.
J. Clin. Immunol.
40
:
475
493
.
5.
Bhattarai
,
D.
,
A.Z.
Banday
,
P.
Tenzin
,
R.
Nisar
, and
P.K.
Patra
.
2024
.
First report on chronic granulomatous disease from Nepal and a review of CYBC1 deficiency
.
J. Clin. Immunol.
44
:
149
.
6.
Chiriaco
,
M.
,
A.
De Matteis
,
C.
Cifaldi
,
G.
Di Matteo
,
B.
Rivalta
,
C.
Passarelli
,
C.
Perrone
,
A.
Novelli
,
F.
De Benedetti
,
A.
Insalaco
, et al
.
2023
.
Characterization of AR-CGD female patient with a novel homozygous deletion in CYBC1 gene presenting with unusual clinical phenotype
.
Clin. Immunol.
251
:
109316
.
7.
Marciano
,
B.E.
,
C.
Spalding
,
A.
Fitzgerald
,
D.
Mann
,
T.
Brown
,
S.
Osgood
,
L.
Yockey
,
D.N.
Darnell
,
L.
Barnhart
,
J.
Daub
, et al
.
2015
.
Common severe infections in chronic granulomatous disease
.
Clin. Infect. Dis.
60
:
1176
1183
.
8.
King
,
J.
,
S.S.V.
Henriet
, and
A.
Warris
.
2016
.
Aspergillosis in chronic granulomatous disease
.
J. Fungi (Basel)
.
2
:
15
.
9.
van den Berg
,
J.M.
,
E.
van Koppen
,
A.
Ahlin
,
B.H.
Belohradsky
,
E.
Bernatowska
,
L.
Corbeel
,
T.
Español
,
A.
Fischer
,
M.
Kurenko-Deptuch
,
R.
Mouy
, et al
.
2009
.
Chronic granulomatous disease: The European experience
.
PLoS One
.
4
:e5234.
10.
Wolach
,
B.
,
R.
Gavrieli
,
M.
de Boer
,
K.
van Leeuwen
,
S.
Berger-Achituv
,
T.
Stauber
,
J.
Ben Ari
,
M.
Rottem
,
Y.
Schlesinger
,
G.
Grisaru-Soen
, et al
.
2017
.
Chronic granulomatous disease: Clinical, functional, molecular, and genetic studies. The Israeli experience with 84 patients
.
Am. J. Hematol.
92
:
28
36
.
11.
Henriet
,
S.
,
P.E.
Verweij
,
S.M.
Holland
,and
A.
Warris
.
2013
.
Invasive fungal infections in patients with chronic granulomatous disease
.
Adv. Exp. Med. Biol.
764
:
27
55
.
12.
Blumental
,
S.
,
R.
Mouy
,
N.
Mahlaoui
,
M.-E.
Bougnoux
,
M.
Debré
,
J.
Beauté
,
O.
Lortholary
,
S.
Blanche
, and
A.
Fischer
.
2011
.
Invasive mold infections in chronic granulomatous disease: A 25-year retrospective survey
.
Clin. Infect. Dis.
53
:
e159
e169
.
13.
Kline
,
A.
,
M.
Parta
,
J.
Cuellar-Rodriguez
,
J.
Gea-Banacloche
,
C.
Kelly
,
S.
Pittaluga
,
C.S.
Zerbe
,
S.M.
Holland
,
H.L.
Malech
, and
E.M.
Kang
.
2025
.
Outcomes in hematopoetic cell transplantation in the setting of mold infections in patients with chronic granulomatous disease
.
Bone Marrow Transplant
.
60
:
191
200
.
14.
Agudelo-Flórez
,
P.
,
C.C.
Prando-Andrade
,
J.A.
López
,
B.T.
Costa-Carvalho
,
A.
Quezada
,
F.J.
Espinosa
,
M.A.
de Souza Paiva
,
P.
Roxo
Jr.
,
A.
Grumach
,
C.A.
Jacob
, et al
.
2006
.
Chronic granulomatous disease in Latin American patients: Clinical spectrum and molecular genetics
.
Pediatr. Blood Cancer
.
46
:
243
252
.
15.
de Oliveira-Junior
,
E.B.
,
N.B.
Zurro
,
C.
Prando
,
O.
Cabral-Marques
,
P.V.S.
Pereira
,
L.-F.
Schimke
,
S.
Klaver
,
M.
Buzolin
,
L.
Blancas-Galicia
,
L.
Santos-Argumedo
, et al
.
2015
.
Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: First report from the LASID registry
.
Pediatr. Blood Cancer
.
62
:
2101
2107
.
16.
Gómez Tello
,
H.
,
E.G.
Mamani-Velásquez
,
A.K.
Gómez Gutiérrez
,
C.
Sánchez Flores
,
V.
Lora Téllez
,
S.
Espinosa Padilla
, and
L.
Blancas Galicia
.
2024
.
Aspergilosis invasiva con compromiso óseo en lactante de cuatro meses con enfermedad granulomatosa crónica
.
Biomedica
.
44
:
31
38
.
17.
Donnelly
,
J.P.
,
S.C.
Chen
,
C.A.
Kauffman
,
W.J.
Steinbach
,
J.W.
Baddley
,
P.E.
Verweij
,
C.J.
Clancy
,
J.R.
Wingard
,
S.R.
Lockhart
,
A.H.
Groll
, et al
.
2020
.
Revision and update of the consensus definitions of invasive fungal disease from the European organization for Research and treatment of cancer and the Mycoses study group education and Research Consortium
.
Clin. Infect. Dis.
71
:
1367
1376
.
18.
Dinauer
,
M.C.
2020
.
Neutrophil defects and diagnosis disorders of neutrophil function: An overview
.
Methods Mol. Biol.
2087
:
11
29
.
19.
Slack
,
M.A.
, and
I.P.
Thomsen
.
2018
.
Prevention of infectious complications in patients with chronic granulomatous disease
.
J. Pediatr. Infect. Dis. Soc.
7
:
S25
S30
.
20.
Gallin
,
J.I.
,
D.W.
Alling
,
H.L.
Malech
,
R.
Wesley
,
D.
Koziol
,
B.
Marciano
,
E.M.
Eisenstein
,
M.L.
Turner
,
E.S.
DeCarlo
,
J.M.
Starling
,
S.M.
Holland
.
2003
.
Itraconazole to prevent fungal infections in chronic granulomatous disease
.
N. Engl. J. Med.
348
:
2416
2422
.
21.
Rawat
,
A.
,
P.
Vignesh
,
M.
Sudhakar
,
M.
Sharma
,
D.
Suri
,
A.
Jindal
,
A.
Gupta
,
J.K.
Shandilya
,
S.K.
Loganathan
,
G.
Kaur
, et al
.
2021
.
Clinical, immunological, and molecular profile of chronic granulomatous disease: A multi-centric study of 236 patients from India
.
Front. Immunol.
12
:
625320
.
22.
Köker
,
M.Y.
,
Y.
Camcioğlu
,
K.
van Leeuwen
,
S.Ş.
Kiliç
,
I.
Barlan
,
M.
Yılmaz
,
A.
Metin
,
M.
de Boer
,
H.
Avcılar
,
T.
Patıroğlu
, et al
.
2013
.
Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients
.
J. Allergy Clin. Immunol.
132
:
1156
1163.e5
.
23.
Wang
,
S.
,
T.
Wang
,
Q.
Xiang
,
M.
Xiao
,
Y.
Cao
,
H.
Xu
,
S.
Li
,
W.
Tian
,
X.
Zhao
,
X.
Tang
, and
L.
Jiang
.
2019
.
Clinical and molecular features of chronic granulomatous disease in mainland China and a XL-CGD female infant patient after prenatal diagnosis
.
J. Clin. Immunol.
39
:
762
775
.
24.
Gao
,
L.-W.
,
Q.-Q.
Yin
,
Y.-J.
Tong
,
J.-G.
Gui
,
X.-Y.
Liu
,
X.-L.
Feng
,
J.
Yin
,
J.
Liu
,
Y.
Guo
,
Y.
Yao
, et al
.
2019
.
Clinical and genetic characteristics of Chinese pediatric patients with chronic granulomatous disease
.
Pediatr. Allergy Immunol.
30
:
378
386
.
25.
Abd Elaziz
,
D.
,
R.
El Hawary
,
S.
Meshaal
,
R.
Alkady
,
S.
Lotfy
,
A.
Eldash
,
A.
Erfan
,
E.
Chohayeb
,
M.
Saad
,
J.
Boutros
, et al
.
2023
.
Chronic granulomatous disease: A cohort of 173 patients-10-years single center experience from Egypt
.
J. Clin. Immunol.
43
:
1799
1811
.
26.
Dunogué
,
B.
,
B.
Pilmis
,
N.
Mahlaoui
,
C.
Elie
,
H.
Coignard-Biehler
,
K.
Amazzough
,
N.
Noël
,
H.
Salvator
,
E.
Catherinot
,
L.J.
Couderc
, et al
.
2017
.
Chronic granulomatous disease in patients reaching adulthood: A nationwide study in France
.
Clin. Infect. Dis.
64
:
767
775
.
27.
Houbraken
,
J.
,
M.
Due
,
J.
Varga
,
M.
Meijer
,
J.C.
Frisvad
, and
R.A.
Samson
.
2007
.
Polyphasic taxonomy of Aspergillus section Usti
.
Stud. Mycol.
59
:
107
128
.
28.
Martire
,
B.
,
R.
Rondelli
,
A.
Soresina
,
C.
Pignata
,
T.
Broccoletti
,
A.
Finocchi
,
P.
Rossi
,
M.
Gattorno
,
M.
Rabusin
,
C.
Azzari
, et al
.
2008
.
Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: An Italian multicenter study
.
Clin. Immunol.
126
:
155
164
.
29.
León-Lara
,
X.
,
U.
Pérez-Blanco
,
M.A.
Yamazaki-Nakashimada
,
J.C.
Bustamante-Ogando
,
N.
Aguilar-Gómez
,
H.
Cristerna-Tarrasa
,
A.T.
Staines-Boone
,
O.J.
Saucedo-Ramírez
,
E.
Fregoso-Zuñiga
,
A.P.
Macías-Robles
, et al
.
2024
.
Description of BCG and tuberculosis disease in a cohort of 79 patients with chronic granulomatous disease
.
J. Clin. Immunol.
44
:
171
.
30.
Lu
,
H.
,
Y.
Mao
,
Y.
Zeng
,
P.
Li
,
P.
Yan
,
Q.
Shi
, and
L.
Liu
.
2024
.
The effect of rifapentine and rifampicin on serum voriconazole levels persist for 5 and 7 Days or more after discontinuation in tuberculosis patients with chronic pulmonary aspergillosis
.
Infect. Drug Resist.
17
:
2853
2862
.
31.
Warris
,
A.
2019
.
Immunopathology of Aspergillus infections in children with chronic granulomatous disease and cystic fibrosis
.
Pediatr. Infect. Dis. J.
38
:
e96
e98
.
32.
Schäppi
,
M.
,
C.
Deffert
,
L.
Fiette
,
G.
Gavazzi
,
F.
Herrmann
,
D.
Belli
, and
K.-H.
Krause
.
2008
.
Branched fungal beta-glucan causes hyperinflammation and necrosis in phagocyte NADPH oxidase-deficient mice
.
J. Pathol.
214
:
434
444
.
33.
Yamazaki-Nakashimada
,
M.A.
,
E.R.
Stiehm
,
D.
Pietropaolo-Cienfuegos
,
V.
Hernandez-Bautista
, and
F.
Espinosa-Rosales
.
2006
.
Corticosteroid therapy for refractory infections in chronic granulomatous disease: Case reports and review of the literature
.
Ann. Allergy Asthma Immunol.
97
:
257
261
.
34.
Chiesa
,
R.
,
J.
Wang
,
H.-J.
Blok
,
S.
Hazelaar
,
B.
Neven
,
D.
Moshous
,
A.
Schulz
,
M.
Hoenig
,
F.
Hauck
,
A.
Al Seraihy
, et al
.
2020
.
Hematopoietic cell transplantation in chronic granulomatous disease: A study of 712 children and adults
.
Blood
.
136
:
1201
1211
.
35.
Farinelli
,
G.
,
V.
Capo
,
S.
Scaramuzza
, and
A.
Aiuti
.
2014
.
Lentiviral vectors for the treatment of primary immunodeficiencies
.
J. Inherit. Metab. Dis.
37
:
525
533
.
36.
Güngör
,
T.
,
P.
Teira
,
M.
Slatter
,
G.
Stussi
,
P.
Stepensky
,
D.
Moshous
,
C.
Vermont
,
I.
Ahmad
,
P.J.
Shaw
,
J.M.
Telles da Cunha
, et al
.
2014
.
Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: A prospective multicentre study
.
Lancet
.
383
:
436
448
.
37.
Güngör
,
T.
,
J.
Halter
,
A.
Klink
,
S.
Junge
,
K.D.
Stumpe
,
R.
Seger
, and
U.
Schanz
.
2005
.
Successful low toxicity hematopoietic stem cell transplantation for high-risk adult chronic granulomatous disease patients
.
Transplantation
.
79
:
1596
1606
.
38.
Dedieu
,
C.
,
S.
Landwehr-Kenzel
,
S.
Thee
,
L.
Oevermann
,
S.
Voigt
,
K.
Marggraf
,
J.
Schulte
,
S.
Lau
,
J.
Roesler
,
J.-S.
Kuehl
, and
H.
von Bernuth
.
2021
.
Hematopoietic stem cell transplantation cures therapy-refractory aspergillosis in chronic granulomatous disease
.
Pediatr. Infect. Dis. J.
40
:
649
-
654
.
39.
Ozsahin
,
H.
,
M.
von Planta
,
I.
Müller
,
H.C.
Steinert
,
D.
Nadal
,
R.
Lauener
,
P.
Tuchschmid
,
U.V.
Willi
,
M.
Ozsahin
,
N.E.
Crompton
, and
R.A.
Seger
.
1998
.
Successful treatment of invasive aspergillosis in chronic granulomatous disease by bone marrow transplantation, granulocyte colony-stimulating factor-mobilized granulocytes, and liposomal amphotericin-B
.
Blood
.
92
:
2719
2724
40.
Seminario
,
G.
,
M.E.
Gonzalez-Serrano
,
C.S.
Aranda
,
A.S.
Grumach
,
G.R.S.
Segundo
,
L.
Regairaz
,
A.A.
Cardona
,
LASID Registry Group
,
J.C.A.
Becerra
,
C.
Poli
, et al
.
2024
.
J. Clin. Immunol.
45
:
28
.
41.
Winkelstein
,
J.A.
,
M.C.
Marino
,
R.B.
Johnston
, Jr.
,
J.
Boyle
,
J.
Curnutte
,
J.I.
Gallin
,
H.L.
Malech
,
S.M.
Holland
,
H.
Ochs
,
P.
Quie
, et al
.
2000
.
Chronic granulomatous disease. Report on a national registry of 368 patients
.
Medicine (Baltimore)
.
79
:
155
169
.
42.
Patterson
,
T.F.
,
G.R.
Thompson
, 3rd
,
D.W.
Denning
,
J.A.
Fishman
,
S.
Hadley
,
R.
Herbrecht
,
D.P.
Kontoyiannis
,
K.A.
Marr
,
V.A.
Morrison
,
M.H.
Nguyen
, et al
.
2016
.
Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America
.
Clin. Infect. Dis.
63
:
e1
e60
.

Author notes

Disclosures: The authors declare no competing interests exist.

This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).