Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-7 of 7
J L Kenyon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1990) 96 (2): 439–445.
Published: 01 August 1990
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1987) 89 (6): 921–958.
Published: 01 June 1987
Abstract
We have used the two-microelectrode voltage-clamp technique to investigate the components of membrane current that contribute to the formation of the early part of the plateau phase of the action potential of calf cardiac Purkinje fibers. 3,4-Diaminopyridine (50 microM) reduced the net transient outward current elicited by depolarizations to potentials positive to -30 mV but had no consistent effect on contraction. We attribute this effect to the blockade of a voltage-activated transient potassium current component. Ryanodine (1 microM), an inhibitor of sarcoplasmic reticulum calcium release and intracellular calcium oscillations in Purkinje fibers (Sutko, J.L., and J.L. Kenyon. 1983. Journal of General Physiology. 82:385-404), had complex effects on membrane currents as it abolished phasic contractions. At early times during a depolarization (5-30 ms), ryanodine reduced the net outward current. We attribute this effect to the loss of a component of calcium-activated potassium current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. At later times during a depolarization (50-200 ms), ryanodine increased the net outward current. This effect was not seen in low-sodium solutions and we could not observe a reversal potential over a voltage range of -100 to +75 mV. These data suggest that the effect of ryanodine on the late membrane current is attributable to the loss of sodium-calcium exchange current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. Neither effect of ryanodine was dependent on chloride ions, which suggests that chloride ions do not carry the ryanodine-sensitive current components. Strontium (2.7 mM replacing calcium) and caffeine (10 mM), two other treatments that interfere with sarcoplasmic reticulum function, had effects in common with ryanodine. This supports the hypothesis that the effects of ryanodine may be attributed to the inhibition of sarcoplasmic reticulum calcium release.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1983) 82 (3): 385–404.
Published: 12 February 1983
Abstract
To test whether ryanodine blocks the release of calcium from the sarcoplasmic reticulum in cardiac muscle, we examined its effects on the aftercontractions and transient depolarizations or transient inward currents developed by guinea pig papillary muscles and voltage-clamped calf cardiac Purkinje fibers in potassium-free solutions. Ryanodine (0.1-1.0 microM) abolished or prevented aftercontractions and transient depolarizations by the papillary muscles without affecting any of the other sequelae of potassium removal. In the presence of 4.7 mM potassium and at a stimulation rate of 1 Hz, ryanodine had only a small variable effect on papillary muscle force development and action potential characteristics. In calf Purkinje fibers, ryanodine (1 nM-1 microM) completely blocked the aftercontractions and transient inward currents without altering the steady state current-voltage relationship. Ryanodine also abolished the twitch in potassium-free solutions, but it enhanced the tonic force during depolarizing voltage-clamp steps. This latter effect was dependent on the combination of ryanodine and potassium-free solutions. The slow inward current was not blocked by 1 microM ryanodine, but ryanodine did appear to abolish an outward current that remained in the presence of 0.5 mM 4-aminopyridine. Our observations are consistent with the hypothesis that ryanodine, by inhibiting the release of calcium from the sarcoplasmic reticulum, prevents the oscillations in intracellular calcium that activate the transient inward currents and aftercontractions associated with calcium overload states.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1982) 80 (1): 83–102.
Published: 01 July 1982
Abstract
Na inactivation was studied in Myxicola (two-pulse procedure, 6-ms gap between conditioning and test pulses). Inactivation developed with an initial delay (range 130-817 microseconds) followed by a simple exponential decline (time constant tau c). Delays (deviations from a simple exponential) are seen only for brief conditioning pulses were gNa is slightly activated. Hodgkin-Huxley kinetics with series resistance, Rs, predict deviations from a simple exponential only for conditioning pulses that substantially activate gNa. Reducing INa fivefold (Tris substitution) had no effect on either tau c or delay. Delay in not generated by Rs or by contamination from activation development. The slowest time constant in Na tails is approximately 1 ms (Goldman and Hahin, 1978) and the gap was 6 ms. Shortening the gap to 2 ms had no effect on either tau c or delay. Delay is a true property of the channel. Delay decreased with more positive conditioning potentials, and also decreased approximately proportionally with time to peak gNa during the conditioning pulse, as expected for sequentially coupled activation and inactivation. In a few cases the difference between Na current values for brief conditioning pulses and the tau c exponential could be measured. Difference values decayed exponentially with time constant tau m. The inactivation time course is described by a model that assumes a process with the kinetics of gNa activation as a precursor to inactivation.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1979) 73 (2): 139–157.
Published: 01 February 1979
Abstract
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1979) 73 (2): 117–138.
Published: 01 February 1979
Abstract
In voltage clamp studies of cardiac Purkinje fibers, a large early outward current is consistently observed during depolarizations to voltages more positive than -20 mV. After the outward peak of the current, the total membrane current declines slowly. Dudel et al. (1967. Pfluegers Arch. Eur. J. Physiol. 294:197--212) reduced the extracellular chloride concentration and found that the outward peak and the decline of the current were abolished. They concluded that the total membrane current at these voltages was largely determined by a time- and voltage-dependent change in the membrane chloride conductance. We reinvestigated the chloride sensitivity of this current, taking care to minimize possible sources of error. When the extracellular chloride concentration was reduced to 8.6% of control, the principal effect was a 20% decrease in the peak amplitude of the outward current. This implies that the membrane chloride conductance is not the major determinant of the total current at these voltages. The reversal potential of current tails obtained after a short conditioning depolarization was not changed by alterations in the extracellular chloride or potassium concentrations. We suspect that the tail currents contain both inward and outward components, and that the apparent reversal potential of the net tail current largely reflects the kinetics of the outward component, so that this experiment does not rule out potassium as a possible charge carrier. The possibility that potassium carries much of the early outward current was further investigated using tetraethylammonium, which blocks potassium currents in nerve and skeletal muscle. This drug substantially reduced the early outward current, which suggests that much of the early outward current is carried by potassium ions.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1977) 70 (5): 635–660.
Published: 01 November 1977