Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-7 of 7
Frederick L. Gates
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1934) 18 (2): 265–278.
Published: 20 November 1934
Abstract
Determination of the absorption spectra of pure preparations of Northrop's crystalline pepsin inactivated by irradiation with ultra-violet light shows that the total absorption in the ultra-violet region of the spectrum increases with the degree of inactivation. This increase is especially marked between 2400 and 2750 Å.u. The rate of photoinactivation is shown to be sensitive to changes in pH, increasing with lower values, and evidently bears a one-quantum relationship to the energy flux. Tests of the rate of inactivation of pepsin exposed to several different bands of the ultra-violet spectrum, in relation to the absorbed energy, indicate that the destruction spectrum of the enzyme agrees essentially with its absorption spectrum and is similar to that of urease.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1934) 18 (2): 279–282.
Published: 20 November 1934
Abstract
Determinations of the temperature coefficient of inactivation of pure crystalline pepsin solutions by ultra-violet irradiation give values very close to unity (1.02).
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1934) 17 (6): 797–801.
Published: 20 July 1934
Abstract
The ultraviolet absorption spectrum of Northrop's pure crystalline pepsin has been determined. The curve of calculated molecular extinction coefficients is given. There is noted a general resemblance of the absorption curve for pepsin to that for urease and tyrosine; the absorption band is maximum at 2750–2800 Å.µ., minimum near 2500. A slight hump on either side of the peak of the extinction curve may be significant.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1930) 14 (1): 31–42.
Published: 20 September 1930
Abstract
The simple conclusion of former investigators that the shorter the wave length of ultra violet light the greater the bactericidal action is in error. A study with measured monochromatic energy reveals a characteristic curve of bactericidal effectiveness with a striking maximum between 260 and 270 m.µ. The reciprocal of this abiotic energy curve suggests its close relation to specific light absorption by some single essential substance in the cell. Methods are described for determining the absorption curve, or absorption coefficients, of intact bacteria. These curves for S. aureus and B. coli have important points of similarity and of difference with the reciprocals of the curves of bactericidal incident energy, and point the way in a further search for the specific substance, or substances, involved in the lethal reaction.
Journal Articles
A STUDY OF THE BACTERICIDAL ACTION OF ULTRA VIOLET LIGHT I. THE REACTION TO MONOCHROMATIC RADIATIONS
Journal:
Journal of General Physiology
Journal of General Physiology (1929) 13 (2): 231–248.
Published: 20 November 1929
Abstract
In this first paper of a series on the bactericidal action of ultra violet light the methods of isolating and measuring monochromatic radiations, of preparing and exposing the bacteria, and of estimating the effects of exposure, are given in detail. At all the different wave lengths studied the reactions of S. aureus followed similar curves, but occurred, at each wave length, at a different energy level. The general similarity of these curves to those for monomolecular reactions provokes a discussion of their signifiance, and emphasis is laid upon variations in susceptibility of individual organisms, due especially to age and metabolic activity, so that the typical curve seems to be best interpreted as one of probability.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1929) 13 (2): 249–260.
Published: 20 November 1929
Abstract
1. Wide differences in the intensity of incident ultra violet energy are not accurately compensated by corresponding changes in the exposure time, so that the Bunsen-Roscoe reciprocity law does not hold, strictly, especially for bactericidal action on young, metabolically and genetically active bacteria. In the present series of experiments, however, the energies used at various wave lengths did not differ by so much as to cause a significant error in the reported reactions. 2. The longer wave length limit of a direct bactericidal action on S. aureus was found to be between 302 and 313 mµ. The shorter limit was not determined because the long exposures required vitiate quantitative results. Bactericidal action was observed at λ225 mµ. 3. The temperature coefficient of the bactericidal reaction approaches 1 and thus furnishes empirical evidence that the direct action of ultra violet light on bacteria is essentially physical or photochemical in character. 4. The hydrogen ion concentration of the environment has no appreciable effect upon the bactericidal reaction between the limits of pH 4.5 and 7.5. At pH 9 and 10 evidence of a slight but definite increase in bacterial susceptibility was noted, but this difference may have been due to a less favorable environment for subsequent recovery and multiplication of injured organisms. 5. Plane polarization of incident ultra violet radiation has no demonstrable effect upon its bactericidal action. In a third paper of this group the ratios of incident to absorbed ultra violet energy at various wave lengths and the significance of these relations in an analysis of the bactericidal reaction will be discussed.
Journal Articles
Journal:
Journal of General Physiology
Journal of General Physiology (1924) 6 (6): 635–645.
Published: 20 July 1924