A study has been made of those proteins which might offer exceptions to the law that the fluidity of a protein solution is a linear function of the volume concentration; viz., egg albumin, serum albumin, pseudoglobulin, euglobulin, gelatin, and sodium caseinogenate.

Solutions of egg albumin below 20 per cent by weight obey the above law but somewhat below 30 per cent the fluidities begin to be too high, presumably due to the contribution to the fluidity made by the deformation of the particles as they come into contact, as the fluidity approaches zero.

The fluidity of serum albumin solutions shows a similar behavior, being exceptional above 15 per cent in weight. Pseudoglobulin and euglobulin give fluidity-concentration curves (Fig. 4) which are linear up to about 2.5 per cent each in a total range of 20 and 14 per cent respectively. From this singular point both compounds show a second range which is linear. Pseudoglobulin is the only substance whose solutions seem to show a third linear range. We have also used the data of Chick and Martin for sodium caseinogenate and found evidence for two linear régimes.

It is desirable at this time to call attention to the measurements of the flow of glycogen solutions by Botazzi and d'Errico (14) which in Fluidity and

See PDF for Structure

plasticity, page 207, are expressed in rhes. The data show two linear fluidity curves of different slopes. In this case it was definitely known that the data for each curve were measured with different viscometers which suggested the possibility of an error in viscometry entering in to confuse the issue. We have no suspicions as to the reliability of the data studied in this paper; we only wish to caution the readers that our hypotheses based on these data must be regarded with due reserve until confirmed.

We have found a formula (11) based on the supposed linear relation between logarithmic fluidities and concentration which is convenient to use within the range, but close examination reveals that it does not reproduce the data for the higher concentrations at 25° nor does it permit extrapolation to pure water It is not realistic enough because it does not contemplate any change of régime in going from viscous to non-Newtonian or plastic flow. The formula does not apply to any other of the proteins studied in this paper nor to the great majority of proteins already reported as following the linear law. These are serious objections. We have therefore offered as an alternative a simple formula (24) according to which the fluidities are additive in the viscous régime. When the emulsoid particles approach close packing, they are deformed and this deformation contributes to the flow and the fluidity volume concentration curve is again linear. In fact, there may be one or more additional changes of régime.

This content is only available as a PDF.