Horrigan, F.T., and R.W. Aldrich

The Journal of General Physiology. Volume 120, No. 3, September 2002. 267–305.

Due to editorial errors several equations in the paper appeared incorrectly. The corrected equations appear below.

Page 270, right column

\(\mathrm{L}=\mathrm{L}_{0}\mathrm{exp}\left(\frac{\mathrm{z}_{\mathrm{L}}\mathrm{V}}{\mathrm{kT}}\right){;}\ \mathrm{J}=\mathrm{J}_{0}\mathrm{exp}\left({-}\frac{\mathrm{z}_{\mathrm{J}}V}{\mathrm{kT}}\right){;}\ \mathrm{K}=\frac{\left[\mathrm{Ca}^{2+}\right]}{\mathrm{K}_{\mathrm{D}}}.\)

Page 274, left column, line 1

\(\left\{1\ +\ \mathrm{exp}[{-}\mathrm{z}(\mathrm{V}\ {-}\ \mathrm{V}_{\mathrm{h}})/\mathrm{kT}]\right\}^{{-}1}\)

Page 277, Figure 7 legend, line 36

\({\tau}_{\mathrm{gfast}}=\left[{\alpha}_{0}e^{{\mathrm{z}_{{\alpha}}\mathrm{V}}/{\mathrm{kT}}}+{\beta}_{0}\mathrm{e}^{{\mathrm{z}_{{\beta}}\mathrm{V}}/{\mathrm{kT}}}\right]^{{-}1}.\)

Page 277, Figure 7 legend, line 46

\(\mathrm{C}_{g}\ =\ \mathrm{A*z}((1\ +\ \mathrm{e}^{{-}\mathrm{z}(\mathrm{V}\ {-}\ \mathrm{Vh})/\mathrm{kT}})^{2}(\mathrm{kTe}^{\mathrm{z}(\mathrm{V}\ {-}\ \mathrm{Vh})/\mathrm{kT}}))^{{-}1}\)

Page 279, left column, lines 3 and 4

\({\alpha}\ =\ {\alpha}_{0}\mathrm{exp}(\mathrm{z}_{{\alpha}}\mathrm{V}/\mathrm{kT})\)
and
\({\beta}\ =\ {\beta}_{0}\mathrm{exp}(\mathrm{z}_{{\beta}}\mathrm{V/kT})\)

Page 284, left column, line 12

\(\mathrm{J}\ =\ 1\ (\mathrm{V}_{\mathrm{h}}(\mathrm{J})\ =\ {-}(\mathrm{kT/z}_{\mathrm{J}})\ \mathrm{ln}(\mathrm{J}_{0}))\)

Page 284, right column, line 1

\(\mathrm{P}_{\mathrm{0}}=\mathrm{L}=\mathrm{L}_{\mathrm{0}}\mathrm{exp}\left(\mathrm{z}_{\mathrm{L}}{\mathrm{V}}/{\mathrm{kT}}\right)\)

Page 288, right column, line 1

\(B\left[\mathrm{V}\right]=\left[1+e^{{{-}\mathrm{z}\left(\mathrm{V}{-}\mathrm{V}_{\mathrm{H}}\right)}/{\mathrm{kT}}}\right]^{{-}1}\)

Page 288, right column, lines 7 and 8

\(\mathrm{V}_{\mathrm{h}}\ =\ {-}(\mathrm{kT/z}_{\mathrm{J}})\mathrm{ln}(\mathrm{DJ}_{0})\ \mathrm{in\ 0\ Ca}^{2+}\ \mathrm{or\ V}_{\mathrm{h}}\ =\ {-}(\mathrm{kT/z}_{\mathrm{J}})\mathrm{ln}(\mathrm{DEJ}_{0})\)