The one-sided action of the polyene antibiotic, amphotericin B, on phospholipid bilayer membranes formed from synthetic phosphatidylcholines (DOPC and DPhPC) and sterols (ergosterol and cholesterol), has been investigated. We found formation of well-defined ionic channels for both sterols and not only for ergosterol-containing membranes (Bolard, J., P. Legrand, F. Heitz, and B. Cybulska. 1991. Biochemistry. 30:5707-5715). Characteristics of these channels were studied in the presence of different salts. It was found that the channels have comparable conductances but different lifetimes that are approximately 100-fold less in cholesterol-containing membranes than in ergosterol-containing ones. Channel blocking by tetraethylammonium (TEA) ions shows that TEA blockage of channels in the presence of cholesterol increases their lifetimes in analogy to the lengthening of lifetimes of protein channels blocked by local anesthetics (Neher, E., and J. H. Steinbach. 1978. J. Physiol. 277: 153-176). However, the effect of the blocker on single-channel conductance is very close for both sterols. The data support the classical model of amphotericin B pore formation from complexes initially lying on the membrane surface as nonconducting prepores. We explain the antibiotic's cytotoxic selectivity by differences in the lifetimes of the channels formed with different sterols and suggest that phosphatidylcholine-sterol membranes can be used as a tool for rapid estimation of polyene antibiotic cytotoxicity.

This content is only available as a PDF.