The human growth curve shows two (and only two) outstanding periods of accelerated growth—the circumnatal and the adolescent.

The circumnatal growth cycle attains great velocity, which reaches a maximum at the time of birth. The curve of this cycle is best fitted by a theoretical skew curve of Pearson's Type I. It has a theoretical range of 44 months and a standard deviation of 5.17 months. The modal velocity is 10.2 kilos per year.

The adolescent growth cycle has less maximum velocity and greater range in time than the circumnatal cycle. The best fitting theoretical curve is a normal frequency curve ranging over about 10 years with a standard deviation of about 21 months and a modal velocity of 4.5 kilos per year.

The two great growth accelerations are superimposed on a residual curve of growth which measures a substratum of growth out of which the accelerations arise. This probably extends from conception to 55 years, on the average. It is characterized by low velocity, averaging about 2 kilos per year from 2 to 12 years. It is interpreted as due to many growth operations coincident or closely blending in time.

Our curve shows no third marked period of acceleration at between the 3rd and 6th years.

The total growth in weight of the body is the sum of the weight of its constituent organs. In some cases these keep pace with the growth of the body as a whole; great accelerations of body growth are due to great accelerations in growth of the constituent organs. In other cases one of the organs of the body (like the thymus gland) may undergo a change in weight that is not in harmony with that of the body as a whole.

The development of the weight in man is the resultant of many more or less elementary growth processes. These result in two special episodes of growth and numerous smaller, blending, growth operations.

Hypotheses are suggested as to the basis of the special growth accelerations.

This content is only available as a PDF.