Kir6.2 channels linked to the green fluorescent protein (GFP) (Kir6.2-GFP) have been expressed alone or with the sulfonylurea receptor SUR1 in HEK293 cells to study the regulation of KATP channels by adenine nucleotides, phosphatidylinositol bisphosphate (PIP2), and phosphorylation. Upon excision of inside-out patches into a Ca2+- and MgATP-free solution, the activity of Kir6.2-GFP+SUR1 channels spontaneously ran down, first quickly within a minute, and then more slowly over tens of minutes. In contrast, under the same conditions, the activity of Kir6.2-GFP alone exhibited only slow rundown. Thus, fast rundown is specific to Kir6.2-GFP+SUR1 and involves SUR1, while slow rundown is a property of both Kir6.2-GFP and Kir6.2-GFP+SUR1 channels and is due, at least in part, to Kir6.2 alone. Kir6.2-GFP+SUR1 fast phase of rundown was of variable amplitude and led to increased ATP sensitivity. Excising patches into a solution containing MgADP prevented this phenomenon, suggesting that fast rundown involves loss of MgADP-dependent stimulation conferred by SUR1. With both Kir6.2-GFP and Kir6.2-GFP+SUR1, the slow phase of rundown led to further increase in ATP sensitivity. Ca2+ accelerated this process, suggesting a role for PIP2 hydrolysis mediated by a Ca2+-dependent phospholipase C. PIP2 could reactivate channel activity after a brief exposure to Ca2+, but not after prolonged exposure. However, in both cases, PIP2 reversed the increase in ATP sensitivity, indicating that PIP2 lowers the ATP sensitivity by increasing Po as well as by decreasing the channel affinity for ATP. With Kir6.2-GFP+SUR1, slow rundown also caused loss of MgADP stimulation and sulfonylurea inhibition, suggesting functional uncoupling of SUR1 from Kir6.2-GFP. Ca2+ facilitated the loss of sensitivity to MgADP, and thus uncoupling of the two subunits. The nonselective protein kinase inhibitor H-7 and the selective PKC inhibitor peptide 19-36 evoked, within 5–15 min, increased ATP sensitivity and loss of reactivation by PIP2 and MgADP. Phosphorylation of Kir6.2 may thus be required for the channel to remain PIP2 responsive, while phosphorylation of Kir6.2 and/or SUR1 is required for functional coupling. In summary, short-term regulation of Kir6.2+SUR1 channels involves MgADP, while long-term regulation requires PIP2 and phosphorylation.
Skip Nav Destination
Article navigation
1 September 2000
Article|
August 28 2000
Regulation of Cloned Atp–Sensitive K Channels by Phosphorylation, Mgadp, and Phosphatidylinositol Bisphosphate (Pip2): A Study of Channel Rundown and Reactivation
Bernard Ribalet,
Bernard Ribalet
aDepartment of Physiology, Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
Search for other works by this author on:
Scott A. John,
Scott A. John
bDepartment of Medicine (Cardiology), Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
Search for other works by this author on:
James N. Weiss
James N. Weiss
aDepartment of Physiology, Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
bDepartment of Medicine (Cardiology), Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
Search for other works by this author on:
Bernard Ribalet
aDepartment of Physiology, Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
Scott A. John
bDepartment of Medicine (Cardiology), Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
James N. Weiss
aDepartment of Physiology, Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
bDepartment of Medicine (Cardiology), Cardiovascular Research Laboratory, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095
Abbreviations used in this paper: GFP, green fluorescent protein; PIP2, phosphatidylinositol bisphosphate.
Received:
March 21 2000
Revision Requested:
July 24 2000
Accepted:
July 24 2000
Online ISSN: 1540-7748
Print ISSN: 0022-1295
© 2000 The Rockefeller University Press
2000
The Rockefeller University Press
J Gen Physiol (2000) 116 (3): 391–410.
Article history
Received:
March 21 2000
Revision Requested:
July 24 2000
Accepted:
July 24 2000
Citation
Bernard Ribalet, Scott A. John, James N. Weiss; Regulation of Cloned Atp–Sensitive K Channels by Phosphorylation, Mgadp, and Phosphatidylinositol Bisphosphate (Pip2): A Study of Channel Rundown and Reactivation. J Gen Physiol 1 September 2000; 116 (3): 391–410. doi: https://doi.org/10.1085/jgp.116.3.391
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Sulfonylurea and K+-Channel Opener Sensitivity of KATP Channels: Functional Coupling of Kir6.2 and Sur1 Subunits
J Gen Physiol (August,1999)
Open State Destabilization by Atp Occupancy Is Mechanism Speeding Burst Exit Underlying KATP Channel Inhibition by Atp
J Gen Physiol (January,2002)
Structural Determinants of Pip2 Regulation of Inward Rectifier KATP Channels
J Gen Physiol (October,2000)
Email alerts
Advertisement