Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Subjects
Journal
Article Type
Date
1-6 of 6
Thomas F. Gajewski
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2020) 217 (8): e20200816.
Published: 22 July 2020
Abstract
Conventional dendritic cells driven by the transcription factor Batf3 (cDC1 cells) are critical for the activation and maintenance of tumor-specific CD8 + T cells. In this issue of JEM , Lin et al. ( https://doi.org/10.1084/jem.20190673 ) demonstrate systemic dysfunction of cDC1 cells in pancreatic cancer, which offers potential treatment strategies to expand the benefit of checkpoint blockade immunotherapy.
Journal Articles
In Special Collection:
Cancer and Autoimmunity
,
JEM Immunology Collection 2018
,
T Cell Dysfunction, Cancer, and Infection
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2017) 214 (2): 381–400.
Published: 23 January 2017
Abstract
Although the presence of tumor-infiltrating lymphocytes (TILs) indicates an endogenous antitumor response, immune regulatory pathways can subvert the effector phase and enable tumor escape. Negative regulatory pathways include extrinsic suppression mechanisms, but also a T cell–intrinsic dysfunctional state. A more detailed study has been hampered by a lack of cell surface markers defining tumor-specific dysfunctional TILs, and PD-1 alone is not sufficient. Recently, we identified the transcription factor Egr2 as a critical component in controlling the anergic state in vitro. In this study, we show that the Egr2-driven cell surface proteins LAG-3 and 4-1BB can identify dysfunctional tumor antigen–specific CD8 + TIL. Co-expression of 4-1BB and LAG-3 was seen on a majority of CD8 + TILs, but not in lymphoid organs. Functional analysis revealed defective IL-2 and TNF production yet retained expression of IFN-γ and regulatory T cell–recruiting chemokines. Transcriptional and phenotypic characterization revealed coexpression of multiple additional co-stimulatory and co-inhibitory receptors. Administration of anti–LAG-3 plus anti–4-1BB mAbs was therapeutic against tumors in vivo, which correlated with phenotypic normalization. Our results indicate that coexpression of LAG-3 and 4-1BB characterize dysfunctional T cells within tumors, and that targeting these receptors has therapeutic utility.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2012) 209 (12): 2157–2163.
Published: 05 November 2012
Abstract
T cell receptor engagement in the absence of costimulation results in a hyporesponsive state termed anergy. Understanding the transcriptional regulation of other T cell differentiation states has provided critical information regarding the biology of T cell regulation in vivo. However, the transcriptional regulation of T cell anergy has been poorly understood. Using the key anergy target gene diacylglycerol kinase (DGK) α as a focal point, we identified early growth response gene 2 (Egr2) as a central transcription factor that regulates the anergic state. Conditional Egr2 deletion in peripheral T cells abolishes induced expression of DGK-α and other anergy genes and restores Ras/MAPK signaling, IL-2 production, and proliferation upon attempted anergy induction. Using superantigen- and tumor-induced anergy models, we found that Egr2 is necessary for anergy induction in vivo. Collectively, our results implicate Egr2 as an essential transcriptional regulator of the T cell anergy program.
Includes: Supplementary data
Journal Articles
Mercedes B. Fuertes, Aalok K. Kacha, Justin Kline, Seng-Ryong Woo, David M. Kranz, Kenneth M. Murphy, Thomas F. Gajewski
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2011) 208 (10): 2005–2016.
Published: 19 September 2011
Abstract
Despite lack of tumor control in many models, spontaneous T cell priming occurs frequently in response to a growing tumor. However, the innate immune mechanisms that promote natural antitumor T cell responses are undefined. In human metastatic melanoma, there was a correlation between a type I interferon (IFN) transcriptional profile and T cell markers in metastatic tumor tissue. In mice, IFN-β was produced by CD11c + cells after tumor implantation, and tumor-induced T cell priming was defective in mice lacking IFN-α/βR or Stat1. IFN signaling was required in the hematopoietic compartment at the level of host antigen-presenting cells, and selectively for intratumoral accumulation of CD8α + dendritic cells, which were demonstrated to be essential using Batf3 −/− mice. Thus, host type I IFNs are critical for the innate immune recognition of a growing tumor through signaling on CD8α + DCs.
Includes: Supplementary data
Journal Articles
Xingluo Liu, Jian Xin Gao, Jing Wen, Lijie Yin, Ou Li, Tao Zuo, Thomas F. Gajewski, Yang-Xin Fu, Pan Zheng, Yang Liu
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2003) 197 (12): 1721–1730.
Published: 16 June 2003
Abstract
B7H1 (PDL1) and B7DC (PDL2) are two new members of the B7 family that can interact with PD-1, a putative negative regulator for immune function. Recent studies have provided evidence for inhibitory functions of both members via PD-1. Meanwhile, compelling evidence exists for costimulatory function of both members. Here we demonstrate that expression of B7DC on the tumor cells promotes CD8 T cell–mediated rejection of tumor cells, at both the induction and effector phase of antitumor immunity. Moreover, B7DC binds to PD-1(−/−) cells and enhances T cell killing in a PD-1–independent mechanism. Our results demonstrate a novel pathway for B7DC to promote tumor immunity and may reconcile the apparently contradictory findings on the function of B7DC.
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (1998) 188 (1): 205–210.
Published: 01 July 1998
Abstract
Ligation of cytotoxic T lymphocyte antigen 4 (CTLA4) appears to inhibit T cell responses. Four mechanisms have been proposed to explain the inhibitory activity of CTLA4: competition for B7-1 and B7-2 binding by CD28; sequestration of signaling molecules away from CD28 via endocytosis; delivery of a signal that antagonizes a CD28 signal; and delivery of a signal that antagonizes a T cell receptor (TCR) signal. As three of these potential mechanisms involve functional antagonism of CD28, an experimental model was designed to determine whether CTLA4 could inhibit T cell function in the absence of CD28. TCR transgenic/recombinase activating gene 2–deficient/CD28–wild-type or CD28-deficient mice were generated and immunized with an antigen-expressing tumor. Primed T cells from both types of mice produced cytokines and proliferated in response to stimulator cells lacking B7 expression. However, whereas the response of CD28 +/+ T cells was augmented by costimulation with B7-1, the response of the CD28 −/− T cells was strongly inhibited. This inhibition was reversed by monoclonal antibody against B7-1 or CTLA4. Thus, CTLA4 can potently inhibit T cell activation in the absence of CD28, indicating that antagonism of a TCR-mediated signal is sufficient to explain the inhibitory effect of CTLA4.