With the purpose of determining whether a diminished activity of the bone marrow could be brought about experimentally, plethora was produced in rabbits by means of repeated small transfusions of blood. Counts of the number of reticulated red cells in the circulating blood were made during the course of the experiments as an index to changes in the activity of the bone marrow.

With the development of plethora, the number of reticulated cells in the blood decreased. In the majority of the plethoric animals, this diminution was extreme, and in some instances, reticulated cells practically disappeared from the blood. A comparison of the red bone marrow of these animals with that of normal controls revealed a marked reduction in the content of reticulated cells.

After a number of transfusions, there occurred in some of the plethoric rabbits a sudden and marked drop in hemoglobin. The hemoglobin continued to fall until a severe grade of anemia was reached. This was followed by an extremely rapid regeneration accompanied by a striking rise in color index. During regeneration, the reticulated cells were enormously increased in number.

Taken together, these facts show that the bone marrow is markedly influenced by plethora. The diminished number of reticulated cells observed, both in the circulating blood and in the marrow, would make it appear that a decided decrease in blood production occurs. The reduction in the number of these cells cannot be due to changes in the constitution of the red cells put out by the bone marrow, as a result of an increased quantity of hemoglobin in the body, because during regeneration from the above mentioned anemia, when the color index was very high, reticulated cells were still present in large numbers. That the activity of the bone marrow does actually diminish during plethora is further evidenced by the occurrence of the anemia. The most reasonable explanation of this phenomenon is that the recipient develops an immunity against the blood of the donors, which results in the destruction of the strange cells that are in circulation. In keeping with this conception is the appearance of isoagglutinins for the donors' red cells in the blood of the recipient, at about the time of the beginning fall in hemoglobin. The occurrence of anemia as a result of the destruction of the alien blood only would seem to be due to the circumstance that, during the period of plethora, blood production is greatly diminished; as a consequence, the blood cells proper to the recipient are gradually reduced in number and replaced by alien cells until the latter come to constitute the bulk of the animal's blood.

In those rabbits developing anemia, the initial drop of hemoglobin from the plethoric level to the normal was constantly accompanied by a marked rise in the number of reticulated cells. This brought up a subsidiary problem for study. With the idea that the stimulation of the bone marrow might be due to the presence of an increased quantity of broken down blood, rabbits, were injected intravenously with large amounts of laked blood cells. The procedure had no evident effect on the blood picture. It was then found that simple blood removal from a plethoric animal which brought back the hemoglobin to the normal level, or even to a point somewhat above, sufficed to cause a marked increase in the number of reticulated cells. Although these findings are not conclusive, they suggest an explanation for the increased bone marrow activity accompanying the initial drop of hemoglobin in the plethoric rabbits; namely, that the organism had in some way adapted itself during the period of plethora to the presence of a greater amount of blood and that the result of blood loss in such an organism was a relative but not absolute anemia.

The finding that the activity of the bone marrow can be depressed by the introduction of a large quantity of blood into the circulation accounts for the diminished bone marrow activity which sometimes occurs after transfusion in pernicious anemia. In such cases there is a marked drop in the number of reticulated cells and other evidence of bone marrow depression; the patient shows no benefit from transfusion or may grow rapidly worse. The cause of this depression is best explained on the basis that in severe instances of the disease where exhaustion of the bone marrow is imminent, the stimulus of the anemia is only just sufficient to keep the marrow functioning. A sudden lowering of this stimulus is brought about by the introduction of a large quantity of blood into the circulation, and the result is a fall in the activity of the bone marrow. It follows from this that in pernicious anemia with a feebly reacting bone marrow as indicated by the number of reticulated red cells, small transfusions are preferable to large ones.

This content is only available as a PDF.