The generation of high-affinity antibodies requires somatic hypermutation (SHM) and class switch recombination (CSR) at the immunoglobulin (Ig) locus. Both processes are triggered by activation-induced cytidine deaminase (AID) and require UNG-encoded uracil-DNA glycosylase. AID has been suggested to function as an mRNA editing deaminase or as a single-strand DNA deaminase. In the latter model, SHM may result from replicative incorporation of dAMP opposite U or from error-prone repair of U, whereas CSR may be triggered by strand breaks at abasic sites. Here, we demonstrate that extracts of UNG-proficient human B cell lines efficiently remove U from single-stranded DNA. In B cell lines from hyper-IgM patients carrying UNG mutations, the single-strand–specific uracil-DNA glycosylase, SMUG1, cannot complement this function. Moreover, the UNG mutations lead to increased accumulation of genomic uracil. One mutation results in an F251S substitution in the UNG catalytic domain. Although this UNG form was fully active and stable when expressed in Escherichia coli, it was mistargeted to mitochondria and degraded in mammalian cells. Our results may explain why SMUG1 cannot compensate the UNG2 deficiency in human B cells, and are fully consistent with the DNA deamination model that requires active nuclear UNG2. Based on our findings and recent information in the literature, we present an integrated model for the initiating steps in CSR.
B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil
Abbreviations used: AID, activation-induced cytidine deaminase; APE, apurinic/apyrimidinic endonuclease; CSR, class switch recombination; DSB, DNA double strand break; EXO, exonucleus; HIGM, hyper IgM; LCL, lymphoid cell line; MBD4, methyl-CpG binding domain 4 glycosylase; MSH, MutS homologue; NEIL, Nei-like glycosylase; RPA, replication protein A; SHM, somatic hypermutation; SMUG1, single-strand–specific monofunctional uracil-DNA glycosylase; ssDNA, single-stranded DNA; TDG, thymine-DNA glycosylase; UDG, uracil-DNA glycosylase; Uss, uracil in single-stranded DNA.
Bodil Kavli, Sonja Andersen, Marit Otterlei, Nina B. Liabakk, Kohsuke Imai, Alain Fischer, Anne Durandy, Hans E. Krokan, Geir Slupphaug; B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil . J Exp Med 20 June 2005; 201 (12): 2011–2021. doi: https://doi.org/10.1084/jem.20050042
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement