Skip to Main Content
Skip Nav Destination

The recently described junctional adhesion molecules (JAMs) in man and mice are involved in homotypic and heterotypic intercellular interactions. Here, a third member of this family, human JAM-3, was identified and described as a novel counterreceptor on platelets for the leukocyte β2-integrin Mac-1 (αMβ2, CD11b/CD18). With the help of two monoclonal antibodies, Gi11 and Gi13, against a 43-kD surface glycoprotein on human platelets, a full-length cDNA encoding JAM-3 was identified. JAM-3 is a type I transmembrane glycoprotein containing two Ig-like domains. Although JAM-3 did not undergo homophilic interactions, myelo-monocytic cells adhered to immobilized JAM-3 or to JAM-3–transfected cells. This heterophilic interaction was specifically attributed to a direct interaction of JAM-3 with the β2-integrin Mac-1 and to a lower extent with p150.95 (αXβ2, CD11c/CD18) but not with LFA-1 (αLβ2, CD11a/CD18) or with β1-integrins. These results were corroborated by analysis of K562 erythroleukemic cells transfected with different heterodimeric β2-integrins and by using purified proteins. Moreover, purified JAM-3 or antibodies against JAM-3 blocked the platelet-neutrophil interaction, indicating that platelet JAM-3 serves as a counterreceptor for Mac-1 mediating leukocyte–platelet interactions. JAM-3 thereby provides a novel molecular target for antagonizing interactions between vascular cells that promote inflammatory vascular pathologies such as in atherothrombosis.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal