Skip to Main Content
Skip Nav Destination

Activation of the nuclear factor (NF)-κB transcription complex by signals derived from the surface expressed B cell antigen receptor controls B cell development, survival, and antigenic responses. Activation of NF-κB is critically dependent on serine phosphorylation of the IκB protein by the multi-component IκB kinase (IKK) containing two catalytic subunits (IKKα and IKKβ) and one regulatory subunit (IKKγ). Using mice deficient for protein kinase C β (PKCβ) we show an essential role of PKCβ in the phosphorylation of IKKα and the subsequent activation of NF-κB in B cells. Defective IKKα phosphorylation correlates with impaired B cell antigen receptor–mediated induction of the pro-survival protein Bcl-xL. Lack of IKKα phosphorylation and defective NF-κB induction in the absence of PKCβ explains the similarity in immunodeficiencies caused by PKCβ or IKKα ablation in B cells. Furthermore, the well established functional cooperation between the protein tyrosine kinase Bruton's tyrosine kinase (Btk), which regulates the activity of NF-κB and PKCβ, suggests PKCβ as a likely serine/threonine kinase component of the Btk-dependent NF-κB activating signal transduction chain downstream of the BCR.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal